4,691 research outputs found

    The rich physics of A-site-ordered quadruple perovskite manganites AMn₇O₁₂

    Get PDF
    Perovskite-structure AMnO3 manganites played an important role in the development of numerous physical concepts such as double exchange, small polarons, electron–phonon coupling, and Jahn–Teller effects, and they host a variety of important properties such as colossal magnetoresistance and spin-induced ferroelectric polarization (multiferroicity). A-site-ordered quadruple perovskite manganites AMn7O12 were discovered shortly after, but at that time their exploration was quite limited. Significant progress in their understanding has been reached in recent years after the wider use of high-pressure synthesis techniques needed to prepare such materials. Here we review this progress, and show that the AMn7O12 compounds host rich physics beyond the canonical AMnO3 materials

    Competing electronic instabilities in the quadruple perovskite manganite PbMn₇O₁₂

    Get PDF
    Structural behavior of PbMn_{7}O_{12} has been studied by high resolution synchrotron x-ray powder diffraction. This material belongs to a family of quadruple perovskite manganites that exhibit an incommensurate structural modulation associated with an orbital density wave. It has been found that the structural modulation in PbMn_{7}O_{12} onsets at 294 K with the incommensurate propagation vector ks=(0,0,∌2.08). At 110 K another structural transition takes place where the propagation vector suddenly drops down to a quasicommensurate value ks=(0,0,2.0060(6)). The quasicommensurate phase is stable in the temperature range of 40-110 K, and below 40 K the propagation vector jumps back to the incommensurate value ks=(0,0,∌2.06). Both low temperature structural transitions are strongly first order with large thermal hysteresis. The orbital density wave in the quasicommensurate phase has been found to be substantially suppressed in comparison with the incommensurate phases, which naturally explains unusual magnetic behavior recently reported for this perovskite. Analysis of the refined structural parameters revealed that that the presence of the quasicommensurate phase is likely to be associated with a competition between the Pb^{2+} lone electron pair and Mn^{3+} Jahn-Teller instabilities

    BiMn7 O12: Polar antiferromagnetism by inverse exchange striction

    Get PDF
    Despite extensive research on magnetically induced ferroelectricity there exist relatively few studies on how a preexisting electric polarization affects magnetic order. Given that well-established magnetoelectric coupling schemes can in principle work in reverse, one might anticipate that primary, polar magnetic structures could be uniquely stabilized in ferroelectric crystals, however, this scenario is apparently rare. Here, we show that in ferroelectric BiMn7O12, a pure, polar E-type antiferromagnetic order emerges below T1=59 K, and we present a phenomenological model of trilinear magnetoelectric coupling consistent with Bi3+ lone-pair driven polar distortions uniquely stabilizing the polar antiferromagnetism via modulation of Heisenberg exchange pathways, i.e., inverse exchange striction. In addition, below T2=55 K there occurs large commensurate canting of the E-type structure due to the onset of ferrimagnetic order on a separate crystallographic sublattice that may be exploited for additional magnetoelectric functionality

    Microstructural Characterization of Graphite Spheroids in Ductile Iron

    Get PDF
    The present work brings new insights by transmission electron microscopy allowing disregarding or supporting some of the models proposed for spheroidal growth of graphite in cast irons. Nodules consist of sectors made of graphite plates elongated along a hai direction and stack on each other with their c axis aligned with the radial direction. These plates are the elementary units for spheroidal growth and a calculation supports the idea that new units continuously nucleate at the ledge between sectors

    A plethora of structural transitions, distortions and modulations in Cu-doped BiMn7O12 quadruple perovskites

    Get PDF
    The presence of strongly competing electronic instabilities in a crystalline material can produce fascinating structural phenomena. For example, the A-site-ordered quadruple perovskite BiMn7O12 hosts both active polar instabilities of the Bi3+ lone pair electrons and Jahn–Teller instabilities of Mn3+ cations that drive the following sequence of phase transformations on cooling, Im-3 > I2/m > Im > P1, corresponding to orbital ordering and polar distortions. Carrier doping by Cu2+ tunes the two instabilities in BiCuxMn7−xO12 solid solutions and significantly complicates the system behavior. The x = 0.05 and 0.1 members show the following sequence of phase transformations on cooling, Im-3 > I2/m > R-1(αÎČÎł)0 > R3(00Îł)t, and are examples of materials with the electric dipole helicoidal texture in the ground state and a dipole density wave structure in the intermediate R-1(αÎČÎł)0 phase (Science 2020, 369, 680–684). Here, the detailed behavior of the BiCuxMn7−xO12 solid solutions with x = 0.2–0.8 was investigated by laboratory X-ray, synchrotron X-ray, and neutron powder diffraction between 5 K and 620 K, and differential scanning calorimetry measurements. Nearly every composition (with a step Δx = 0.1) has a unique behavior when considering both the sequence of phase transitions and the presence of incommensurate superstructure reflections. The sequence Im-3 > HT-Immm(t)* > Immm* > LT-Immm(t)* is realized for x = 0.2 and 0.3 (where t denotes pseudo-tetragonal), Im-3 > I2/m* > Immm(t)* – for x = 0.4, Im-3 > I2/m* > I2/m* – for x = 0.5, Im-3 > I2/m* > Im-3 – for x = 0.6 and 0.7, and Im-3 > R-3 > I2/m > Im-3 – for x = 0.8, where asterisks denote the presence of additional incommensurate reflections. Re-entrance of the high-temperature cubic phase was observed at low temperatures for x = 0.6–0.8 suggesting strong competition between the different electronic instabilities. The re-entrant cubic phases have nearly zero thermal expansion

    Reproductive biology of female blue swimmer crabs in the temperate estuaries of south-eastern Australia

    Get PDF
    The blue swimmer crab (BSC, Portunus armatus) is an economically and culturally important species distributed throughout the coastal waters of the Indo-Pacific region. Reproduction of BSC is poorly understood in south-eastern Australia, a region that is experiencing substantial tropicalisation from global warming. We examined gonadal development, egg-mass relationships, and the influence of temperature on gonadal development and egg production within five different estuaries spanning ∌2.5° of latitude. A negative correlation between the gonadosomatic index (GSI, an index of gonadal development and reproductive investment) and hepatosomatic index (HSI, an index of energy storage) was observed in only the final stages of ovarian development. The weight of the egg mass increased logarithmically with body mass, accounting for up to 55% of total body mass, which was significantly larger than observed in other studies. Thermal performance curves showed a peak in individual reproductive output at a mean monthly temperature of ∌24°C, at which the individual egg mass weight reached a maximum and the HSI reached a minimum. Environmentally driven variation in BSC reproduction has implications for population productivity and inter-annual variation in recruitment

    ZFOURGE: Extreme 5007A˚\AA emission may be a common early-lifetime phase for star-forming galaxies at z>2.5z > 2.5

    Get PDF
    Using the \prospector\ spectral energy distribution (SED) fitting code, we analyze the properties of 19 Extreme Emission Line Galaxies (EELGs) identified in the bluest composite SED in the \zfourge\ survey at 2.5≀z≀42.5 \leq z \leq 4. \prospector\ includes a physical model for nebular emission and returns probability distributions for stellar mass, stellar metallicity, dust attenuation, and nonparametric star formation history (SFH). The EELGs show evidence for a starburst in the most recent 50 Myr, with the median EELG having a specific star formation rate (sSFR) of 4.6 Gyr−1^{-1} and forming 15\% of its mass in this short time. For a sample of more typical star-forming galaxies (SFGs) at the same redshifts, the median SFG has a sSFR of 1.1 Gyr−1^{-1} and forms only 4%4\% of its mass in the last 50 Myr. We find that virtually all of our EELGs have rising SFHs, while most of our SFGs do not. From our analysis, we hypothesize that many, if not most, star-forming galaxies at z≄2.5z \geq 2.5 undergo an extreme HÎČ\beta+[\hbox{{\rm O}\kern 0.1em{\sc iii}}] emission line phase early in their lifetimes. In a companion paper, we obtain spectroscopic confirmation of the EELGs as part of our {\sc MOSEL} survey. In the future, explorations of uncertainties in modeling the UV slope for galaxies at z>2z>2 are needed to better constrain their properties, e.g. stellar metallicities.Comment: 11 pages, 5 figures (main figure is fig 5), accepted for publication in Ap

    Detection, occurrence, and fate of emerging contaminants in agricultural environments (2019)

    Get PDF
    A review of 82 papers published in 2018 is presented. The topics ranged from detailed descriptions of analytical methods, to fate and occurrence studies, to ecological effects and sampling techniques for a wide variety of emerging contaminants likely to occur in agricultural environments. New methods and studies on veterinary pharmaceuticals, microplastics, and engineered nanomaterials in agricultural environments continue to expand our knowledge base on the occurrence and potential impacts of these compounds. This review is divided into the following sections: Introduction, Analytical Methods, Fate and Occurrence, Pharmaceutical Metabolites, Anthelmintics, Microplastics, and Engineered Nanomaterials
    • 

    corecore