190 research outputs found

    OSCE best practice guidelines—applicability for nursing simulations

    Get PDF
    Background: Objective structured clinical examinations (OSCEs) have been used for many years within healthcare programmes as a measure of students’ and clinicians’ clinical performance. OSCEs are a form of simulation and are often summative but may be formative. This educational approach requires robust design based on sound pedagogy to assure practice and assessment of holistic nursing care. As part of a project testing seven OSCE best practice guidelines (BPGs) across three sites, the BPGs were applied to an existing simulation activity. The aim of this study was to determine the applicability and value of the OSCE BPGs in an existing formative simulation. Methods: A mixed methods approach was used to address the research question: in what ways do OSCE BPGs align with simulations. The BPGs were aligned and compared with all aspects of an existing simulation activity offered to first-year nursing students at a large city-based university, prior to their first clinical placement in an Australian healthcare setting. Survey questions, comprised of Likert scales and free-text responses, used at other sites were slightly modified for reference to simulation. Students’ opinions about the refined simulation activity were collected via electronic survey immediately following the simulation and from focus groups. Template analysis, using the BPGs as existing or a priori thematic codes, enabled interpretation and illumination of the data from both sources.Results: Few changes were made to the existing simulation plan and format. Students’ responses from surveys (n = 367) and four focus groups indicated that all seven BPGs were applicable for simulations in guiding their learning, particularly in the affective domain, and assisting their perceived needs in preparing for upcoming clinical practice. Discussion: Similarities were found in the intent of simulation and OSCEs informed by the BPGs to enable feedback to students about holistic practice across affective, cognitive and psychomotor domains. The similarities in this study are consistent with findings from exploring the applicability of the BPGs for OSCEs in other nursing education settings, contexts, universities and jurisdictions. The BPGs also aligned with other frameworks and standards often used to develop and deliver simulations. Conclusions: Findings from this study provide further evidence of the applicability of the seven OSCE BPGs to inform the development and delivery of, in this context, simulation activities for nurses. The manner in which simulation is offered to large cohorts requires further consideration to meet students’ needs in rehearsing the registered nurse role

    OSCE Best Practice Guidelines – applicability for nursing simulations

    Get PDF
    Background: Objective structured clinical examinations (OSCEs) have been used for many years within healthcare programmes as a measure of students’ and clinicians’ clinical performance. OSCEs are a form of simulation and are often summative but may be formative. This educational approach requires robust design based on sound pedagogy to assure practice and assessment of holistic nursing care. As part of a project testing seven OSCE best practice guidelines (BPGs) across three sites, the BPGs were applied to an existing simulation activity. The aim of this study was to determine the applicability and value of the OSCE BPGs in an existing formative simulation. Methods: A mixed methods approach was used to address the research question: in what ways do OSCE BPGs align with simulations. The BPGs were aligned and compared with all aspects of an existing simulation activity offered to first-year nursing students at a large city-based university, prior to their first clinical placement in an Australian healthcare setting. Survey questions, comprised of Likert scales and free-text responses, used at other sites were slightly modified for reference to simulation. Students’ opinions about the refined simulation activity were collected via electronic survey immediately following the simulation and from focus groups. Template analysis, using the BPGs as existing or a priori thematic codes, enabled interpretation and illumination of the data from both sources.Results: Few changes were made to the existing simulation plan and format. Students’ responses from surveys (n = 367) and four focus groups indicated that all seven BPGs were applicable for simulations in guiding their learning, particularly in the affective domain, and assisting their perceived needs in preparing for upcoming clinical practice. Discussion: Similarities were found in the intent of simulation and OSCEs informed by the BPGs to enable feedback to students about holistic practice across affective, cognitive and psychomotor domains. The similarities in this study are consistent with findings from exploring the applicability of the BPGs for OSCEs in other nursing education settings, contexts, universities and jurisdictions. The BPGs also aligned with other frameworks and standards often used to develop and deliver simulations. Conclusions: Findings from this study provide further evidence of the applicability of the seven OSCE BPGs to inform the development and delivery of, in this context, simulation activities for nurses. The manner in which simulation is offered to large cohorts requires further consideration to meet students’ needs in rehearsing the registered nurse role

    Detection and Removal of Biases in the Analysis of Next-Generation Sequencing Reads

    Get PDF
    Since the emergence of next-generation sequencing (NGS) technologies, great effort has been put into the development of tools for analysis of the short reads. In parallel, knowledge is increasing regarding biases inherent in these technologies. Here we discuss four different biases we encountered while analyzing various Illumina datasets. These biases are due to both biological and statistical effects that in particular affect comparisons between different genomic regions. Specifically, we encountered biases pertaining to the distributions of nucleotides across sequencing cycles, to mappability, to contamination of pre-mRNA with mRNA, and to non-uniform hydrolysis of RNA. Most of these biases are not specific to one analyzed dataset, but are present across a variety of datasets and within a variety of genomic contexts. Importantly, some of these biases correlated in a highly significant manner with biological features, including transcript length, gene expression levels, conservation levels, and exon-intron architecture, misleadingly increasing the credibility of results due to them. We also demonstrate the relevance of these biases in the context of analyzing an NGS dataset mapping transcriptionally engaged RNA polymerase II (RNAPII) in the context of exon-intron architecture, and show that elimination of these biases is crucial for avoiding erroneous interpretation of the data. Collectively, our results highlight several important pitfalls, challenges and approaches in the analysis of NGS reads

    A Pathogenic Mechanism in Huntington's Disease Involves Small CAG-Repeated RNAs with Neurotoxic Activity

    Get PDF
    Huntington's disease (HD) is an autosomal dominantly inherited disorder caused by the expansion of CAG repeats in the Huntingtin (HTT) gene. The abnormally extended polyglutamine in the HTT protein encoded by the CAG repeats has toxic effects. Here, we provide evidence to support that the mutant HTT CAG repeats interfere with cell viability at the RNA level. In human neuronal cells, expanded HTT exon-1 mRNA with CAG repeat lengths above the threshold for complete penetrance (40 or greater) induced cell death and increased levels of small CAG-repeated RNAs (sCAGs), of ≈21 nucleotides in a Dicer-dependent manner. The severity of the toxic effect of HTT mRNA and sCAG generation correlated with CAG expansion length. Small RNAs obtained from cells expressing mutant HTT and from HD human brains significantly decreased neuronal viability, in an Ago2-dependent mechanism. In both cases, the use of anti-miRs specific for sCAGs efficiently blocked the toxic effect, supporting a key role of sCAGs in HTT-mediated toxicity. Luciferase-reporter assays showed that expanded HTT silences the expression of CTG-containing genes that are down-regulated in HD. These results suggest a possible link between HD and sCAG expression with an aberrant activation of the siRNA/miRNA gene silencing machinery, which may trigger a detrimental response. The identification of the specific cellular processes affected by sCAGs may provide insights into the pathogenic mechanisms underlying HD, offering opportunities to develop new therapeutic approaches

    Long-Term Impact of Radiation on the Stem Cell and Oligodendrocyte Precursors in the Brain

    Get PDF
    Background. The cellular basis of long term radiation damage in the brain is not fully understood. Methods and Findings. We administered a dose of 25Gy to adult rat brains while shielding the olfactory bulbs. Quantitative analyses were serially performed on different brain regions over 15 months. Our data reveal an immediate and permanent suppression of SVZ proliferation and neurogenesis. The olfactory bulb demonstrates a transient but remarkable SVZ-independent ability for compensation and maintenance of the calretinin interneuron population. The oligodendrocyte compartment exhibits a complex pattern of limited proliferation of NG2 progenitors but steady loss of the oligodendroglial antigen O4. As of nine months post radiation, diffuse demyelination starts in all irradiated brains. Counts of capillary segments and length demonstrate significant loss one day post radiation but swift and persistent recovery of the vasculature up to 15 months post XRT. MRI imaging confirms loss of volume of the corpus callosum and early signs of demyelination at 12 months. Ultrastructural analysis demonstrates progressive degradation of myelin sheaths with axonal preservation. Areas of focal necrosis appear beyond 15 months and are preceded by widespread demyelination. Human white matter specimens obtained post-radiation confirm early loss of oligodendrocyte progenitors and delayed onset of myelin sheath fragmentation with preserved capillaries. Conclusions. This study demonstrates that long term radiation injury is associated with irreversible damage to the neural stem cell compartment in the rodent SVZ and loss of oligodendrocyte precursor cells in both rodent and human brain. Delayed onset demyelination precedes focal necrosis and is likely due to the loss of oligodendrocyte precursor

    Perception of Thermal Pain and the Thermal Grill Illusion Is Associated with Polymorphisms in the Serotonin Transporter Gene

    Get PDF
    AIM: The main aim of this study was to assess if the perception of thermal pain thresholds is associated with genetically inferred levels of expression of the 5-HT transporter (5-HTT). Additionally, the perception of the so-called thermal grill illusion (TGI) was assessed. Forty-four healthy individuals (27 females, 17 males) were selected a-priori based on their 5-HTTLPR/rs25531 ('tri-allelic 5-HTTLPR') genotype, with inferred high or low 5-HTT expression. Thresholds for heat- and cold-pain were determined along with the sensory and affective dimensions of the TGI. RESULTS: Thresholds to heat- and cold-pain correlated strongly (rho  = -0.58, p<0.001). Individuals in the low 5-HTT-expressing group were significantly less sensitive to heat-pain (p = 0.02) and cold-pain (p = 0.03), compared to the high-expressing group. A significant gender-by-genotype interaction also emerged for cold-pain perception (p = 0.02); low 5-HTT-expressing females were less sensitive. The TGI was rated as significantly more unpleasant (affective-motivational dimension) than painful (sensory-discriminatory dimension), (p<0.001). Females in the low 5-HTT expressing group rated the TGI as significantly less unpleasant than high 5-HTT expressing females (p<0.05), with no such differences among men. CONCLUSION/SIGNIFICANCE: We demonstrate an association between inferred low 5-HTT expression and elevated thresholds to thermal pain in healthy non-depressed individuals. Despite the fact that reduced 5-HTT expression is a risk factor for chronic pain we found it to be related to hypoalgesia for threshold thermal pain. Low 5-HTT expression is, however, also a risk factor for depression where thermal insensitivity is often seen. Our results may thus contribute to a better understanding of the molecular underpinnings of such paradoxical hypoalgesia. The results point to a differential regulation of thermoafferent-information along the neuraxis on the basis of 5-HTT expression and gender. The TGI, suggested to rely on the central integration of thermoafferent-information, may prove a valuable tool in probing the affective-motivational dimension of these putative mechanisms

    Adaptive Radiation in Mediterranean Cistus (Cistaceae)

    Get PDF
    lineage consists of 12 species primarily distributed in Mediterranean habitats and is herein subject to analysis. lineages), which display asymmetric characteristics: number of species (2 vs. 10), leaf morphologies (linear vs. linear to ovate), floral characteristics (small, three-sepalled vs. small to large, three- or five-sepalled flowers) and ecological attributes (low-land vs. low-land to mountain environments). A positive phenotype-environment correlation has been detected by historical reconstructions of morphological traits (leaf shape, leaf labdanum content and leaf pubescence). Ecological evidence indicates that modifications of leaf shape and size, coupled with differences in labdanum secretion and pubescence density, appear to be related to success of new species in different Mediterranean habitats.

    Regional differences in lumbar spinal posture and the influence of low back pain

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Spinal posture is commonly a focus in the assessment and clinical management of low back pain (LBP) patients. However, the link between spinal posture and LBP is not fully understood. Recent evidence suggests that considering regional, rather than total lumbar spine posture is important. The purpose of this study was to determine; if there are regional differences in habitual lumbar spine posture and movement, and if these findings are influenced by LBP.</p> <p>Methods</p> <p>One hundred and seventy female undergraduate nursing students, with and without LBP, participated in this cross-sectional study. Lower lumbar (LLx), Upper lumbar (ULx) and total lumbar (TLx) spine angles were measured using an electromagnetic tracking system in static postures and across a range of functional tasks.</p> <p>Results</p> <p>Regional differences in lumbar posture and movement were found. Mean LLx posture did not correlate with ULx posture in sitting (r = 0.036, p = 0.638), but showed a moderate inverse correlation with ULx posture in usual standing (r = -0.505, p < 0.001). Regional differences in range of motion from reference postures in sitting and standing were evident. BMI accounted for regional differences found in all sitting and some standing measures. LBP was not associated with differences in regional lumbar spine angles or range of motion, with the exception of maximal backward bending range of motion (F = 5.18, p = 0.007).</p> <p>Conclusion</p> <p>This study supports the concept of regional differences within the lumbar spine during common postures and movements. Global lumbar spine kinematics do not reflect regional lumbar spine kinematics, which has implications for interpretation of measures of spinal posture, motion and loading. BMI influenced regional lumbar posture and movement, possibly representing adaptation due to load.</p
    corecore