39 research outputs found

    Can A Quantum Field Theory Ontology Help Resolve the Problem of Consciousness?

    Get PDF
    The hard problem of consciousness arises in most incarnations of present day physicalism. Why should certain physical processes necessarily be accompanied by experience? One possible response is that physicalism itself should be modified in order to accommodate experience: But, modified how? In the present work, we investigate whether an ontology derived from quantum field theory can help resolve the hard problem. We begin with the assumption that experience cannot exist without being accompanied by a subject of experience (SoE). While people well versed in Indian philosophy will not find that statement problematic, it is still controversial in the analytic tradition. Luckily for us, Strawson has elaborately defended the notion of a thin subject—an SoE which exhibits a phenomenal unity with different types of content (sensations, thoughts etc.) occurring during its temporal existence. Next, following Stoljar, we invoke our ignorance of the true physical as the reason for the explanatory gap between present day physical processes (events, properties) and experience. We are therefore permitted to conceive of thin subjects as related to the physical via a new, yet to be elaborated relation. While this is difficult to conceive under most varieties of classical physics, we argue that this may not be the case under certain quantum field theory ontologies. We suggest that the relation binding an SoE to the physical is akin to the relation between a particle and (quantum) field. In quantum field theory, a particle is conceived as a coherent excitation of a field. Under the right set of circumstances, a particle coalesces out of a field and dissipates. We suggest that an SoE can be conceived as akin to a particle—a SelfOn—which coalesces out of physical fields, persists for a brief period of time and then dissipates in a manner similar to the phenomenology of a thin subject. Experiences are physical properties of selfons with the constraint (specified by a similarity metric) that selfons belonging to the same natural kind will have similar experiences. While it is odd at first glance to conceive of subjects of experience as akin to particles, the spatial and temporal unity exhibited by particles as opposed to fields and the expectation that selfons are new kinds of particles, paves the way for cementing this notion. Next, we detail the various no-go theorems in most versions of quantum field theory and discuss their impact on the existence of selfons. Finally, we argue that the time is ripe for a rejuvenated Indian philosophy to begin tackling the three-way relationship between SoEs (which may become equivalent to jivas in certain Indian frameworks), phenomenal content and the physical world. With analytic philosophy still struggling to come to terms with the complex worlds of quantum field theory and with the relative inexperience of the western world in arguing the jiva-world relation, there is a clear and present opportunity for Indian philosophy to make a worldcentric contribution to the hard problem of experience

    Solitary waves in the Nonlinear Dirac Equation

    Get PDF
    In the present work, we consider the existence, stability, and dynamics of solitary waves in the nonlinear Dirac equation. We start by introducing the Soler model of self-interacting spinors, and discuss its localized waveforms in one, two, and three spatial dimensions and the equations they satisfy. We present the associated explicit solutions in one dimension and numerically obtain their analogues in higher dimensions. The stability is subsequently discussed from a theoretical perspective and then complemented with numerical computations. Finally, the dynamics of the solutions is explored and compared to its non-relativistic analogue, which is the nonlinear Schr{\"o}dinger equation. A few special topics are also explored, including the discrete variant of the nonlinear Dirac equation and its solitary wave properties, as well as the PT-symmetric variant of the model

    Early Low-Titer Neutralizing Antibodies Impede HIV-1 Replication and Select for Virus Escape

    Get PDF
    Single genome sequencing of early HIV-1 genomes provides a sensitive, dynamic assessment of virus evolution and insight into the earliest anti-viral immune responses in vivo. By using this approach, together with deep sequencing, site-directed mutagenesis, antibody adsorptions and virus-entry assays, we found evidence in three subjects of neutralizing antibody (Nab) responses as early as 2 weeks post-seroconversion, with Nab titers as low as 1∶20 to 1∶50 (IC50) selecting for virus escape. In each of the subjects, Nabs targeted different regions of the HIV-1 envelope (Env) in a strain-specific, conformationally sensitive manner. In subject CH40, virus escape was first mediated by mutations in the V1 region of the Env, followed by V3. HIV-1 specific monoclonal antibodies from this subject mapped to an immunodominant region at the base of V3 and exhibited neutralizing patterns indistinguishable from polyclonal antibody responses, indicating V1–V3 interactions within the Env trimer. In subject CH77, escape mutations mapped to the V2 region of Env, several of which selected for alterations of glycosylation. And in subject CH58, escape mutations mapped to the Env outer domain. In all three subjects, initial Nab recognition was followed by sequential rounds of virus escape and Nab elicitation, with Nab escape variants exhibiting variable costs to replication fitness. Although delayed in comparison with autologous CD8 T-cell responses, our findings show that Nabs appear earlier in HIV-1 infection than previously recognized, target diverse sites on HIV-1 Env, and impede virus replication at surprisingly low titers. The unexpected in vivo sensitivity of early transmitted/founder virus to Nabs raises the possibility that similarly low concentrations of vaccine-induced Nabs could impair virus acquisition in natural HIV-1 transmission, where the risk of infection is low and the number of viruses responsible for transmission and productive clinical infection is typically one

    Developmental pathway for potent V1V2-directed HIV-neutralizing antibodies.

    Get PDF
    CAPRISA, 2014.Antibodies capable of neutralizing HIV-1 often target variable regions 1 and 2 (V1V2) of the HIV-1 envelope, but the mechanism of their elicitation has been unclear. Here we define the developmental pathway by which such antibodies are generated and acquire the requisite molecular characteristics for neutralization. Twelve somatically related neutralizing antibodies (CAP256-VRC26.01-12) were isolated from donor CAP256 (from the Centre for the AIDS Programme of Research in South Africa (CAPRISA)); each antibody contained the protruding tyrosine-sulphated, anionic antigen-binding loop (complementarity-determining region (CDR) H3) characteristic of this category of antibodies. Their unmutated ancestor emerged between weeks 30-38 post-infection with a 35-residue CDR H3, and neutralized the virus that superinfected this individual 15 weeks after initial infection. Improved neutralization breadth and potency occurred by week 59 with modest affinity maturation, and was preceded by extensive diversification of the virus population. HIV-1 V1V2-directed neutralizing antibodies can thus develop relatively rapidly through initial selection of B cells with a long CDR H3, and limited subsequent somatic hypermutation. These data provide important insights relevant to HIV-1 vaccine development

    Permeation, regulation and control of expression of TRP channels by trace metal ions

    Get PDF

    Coulomb excitation of 29,30Na: Mapping the borders of the island of inversion

    Get PDF
    Nuclear shell evolution in neutron-rich Na nuclei around N = 20 was studied by determining reduced transition probabilities, i.e., B(E2) and B(M1) values, in order to map the border of the island of inversion. To this end Coulomb-excitation experiments, employing radioactive 29,30Na beams with a final beam energy of 2.85 MeV/nucleon, were performed at REX-ISOLDE, CERN. De-excitation γ rays were detected by the MINIBALL γ -ray spectrometer in coincidence with scattered particles in a segmented Si detector. Transition probabilities to excited states were deduced. The measured B(E2) values agree well with shell-model predictions, supporting the idea that in the Na isotopic chain the ground-state wave function contains significant intruder admixture already at N = 18, with N = 19 having an almost pure two-particle–two-hole deformed ground-state configuration.status: publishe
    corecore