180 research outputs found

    Abdominal functional electrical stimulation to improve respiratory function after spinal cord injury: a systematic review and meta-analysis

    Get PDF
    Objectives: Abdominal functional electrical stimulation (abdominal FES) is the application of a train of electrical pulses to the abdominal muscles, causing them to contract. Abdominal FES has been used as a neuroprosthesis to acutely augment respiratory function and as a rehabilitation tool to achieve a chronic increase in respiratory function after abdominal FES training, primarily focusing on patients with spinal cord injury (SCI). This study aimed to review the evidence surrounding the use of abdominal FES to improve respiratory function in both an acute and chronic manner after SCI. Settings: A systematic search was performed on PubMed, with studies included if they applied abdominal FES to improve respiratory function in patients with SCI. Methods: Fourteen studies met the inclusion criteria (10 acute and 4 chronic). Low participant numbers and heterogeneity across studies reduced the power of the meta-analysis. Despite this, abdominal FES was found to cause a significant acute improvement in cough peak flow, whereas forced exhaled volume in 1 s approached significance. A significant chronic increase in unassisted vital capacity, forced vital capacity and peak expiratory flow was found after abdominal FES training compared with baseline. Conclusions: This systematic review suggests that abdominal FES is an effective technique for improving respiratory function in both an acute and chronic manner after SCI. However, further randomised controlled trials, with larger participant numbers and standardised protocols, are needed to fully establish the clinical efficacy of this technique

    Modulating sensitivity to drug-induced apoptosis: the future for chemotherapy?

    Get PDF
    Drug resistance is a fundamental problem in the treatment of most common human cancers. Our understanding of the cellular mechanisms underlying death and survival has allowed the development of rational approaches to overcoming drug resistance. The mitogen activated protein kinase family of protein serine/threonine kinases has been implicated in this complex web of signalling, with some members acting to enhance death and other members to prevent it. A recent publication by MacKeigan et al is the first to demonstrate an enhancement of drug-induced cell death by simultaneous blockade of MEK-mediated survival signalling, and offers the potential for targeted adjuvant therapy as a means of overcoming drug resistance

    Analysis of Mice Lacking DNaseI Hypersensitive Sites at the 5′ End of the IgH Locus

    Get PDF
    The 5′ end of the IgH locus contains a cluster of DNaseI hypersensitive sites, one of which (HS1) was shown to be pro-B cell specific and to contain binding sites for the transcription factors PU.1, E2A, and Pax5. These data as well as the location of the hypersensitive sites at the 5′ border of the IgH locus suggested a possible regulatory function for these elements with respect to the IgH locus. To test this notion, we generated mice carrying targeted deletions of either the pro-B cell specific site HS1 or the whole cluster of DNaseI hypersensitive sites. Lymphocytes carrying these deletions appear to undergo normal development, and mutant B cells do not exhibit any obvious defects in V(D)J recombination, allelic exclusion, or class switch recombination. We conclude that deletion of these DNaseI hypersensitive sites does not have an obvious impact on the IgH locus or B cell development

    Virus Infection Suppresses Nicotiana benthamiana Adaptive Phenotypic Plasticity

    Get PDF
    Competition and parasitism are two important selective forces that shape life-histories, migration rates and population dynamics. Recently, it has been shown in various pathosystems that parasites can modify intraspecific competition, thus generating an indirect cost of parasitism. Here, we investigated if this phenomenon was present in a plant-potyvirus system using two viruses of different virulence (Tobacco etch virus and Turnip mosaic virus). Moreover, we asked if parasitism interacted with the shade avoidance syndrome, the plant-specific phenotypic plasticity in response to intraspecific competition. Our results indicate that the modification of intraspecific competition by parasitism is not present in the Nicotiana benthamiana – potyvirus system and suggests that this phenomenon is not universal but depends on the peculiarities of each pathosystem. However, whereas the healthy N. benthamiana presented a clear shade avoidance syndrome, this phenotypic plasticity totally disappeared when the plants were infected with TEV and TuMV, very likely resulting in a fitness loss and being another form of indirect cost of parasitism. This result suggests that the suppression or the alteration of adaptive phenotypic plasticity might be a component of virulence that is often overlooked

    mTORC1 in the Paneth cell niche couples intestinal stem cell function to calorie intake

    Get PDF
    How adult tissue stem and niche cells respond to the nutritional state of an organism is not well understood. Here we find that Paneth cells, a key constituent of the mammalian intestinal stem-cell (ISC) niche, augment stem-cell function in response to calorie restriction. Calorie restriction acts by reducing mechanistic target of rapamycin complex 1 (mTORC1) signalling in Paneth cells, and the ISC-enhancing effects of calorie restriction can be mimicked by rapamycin. Calorie intake regulates mTORC1 in Paneth cells, but not ISCs, and forced activation of mTORC1 in Paneth cells during calorie restriction abolishes the ISC-augmenting effects of the niche. Finally, increased expression of bone stromal antigen 1 (Bst1) in Paneth cells—an ectoenzyme that produces the paracrine factor cyclic ADP ribose—mediates the effects of calorie restriction and rapamycin on ISC function. Our findings establish that mTORC1 non-cell-autonomously regulates stem-cell self-renewal, and highlight a significant role of the mammalian intestinal niche in coupling stem-cell function to organismal physiology.National Institutes of Health (U.S.) (CA103866)National Institutes of Health (U.S.) (CA129105)David H. Koch Institute for Integrative Cancer Research at MIT (Initiator Award)Ellison Medical FoundationNational Cancer Institute (U.S.) (NCI (T32CA09216) fellowship support)Academy of FinlandFoundations’ Postdoc PoolNational Institutes of Health (U.S.) (NIH (1F32AG032833-01A1))Jane Coffin Childs Memorial Fund for Medical Researc

    Troponin release following endurance exercise: is inflammation the cause? a cardiovascular magnetic resonance study

    Get PDF
    Background: The aetiology and clinical significance of troponin release following endurance exercise is unclear but may be due to transient myocardial inflammation. Cardiovascular magnetic resonance (CMR) affords us the opportunity to evaluate the presence of myocardial inflammation and focal fibrosis and is the ideal imaging modality to study this hypothesis. We sought to correlate the relationship between acute bouts of ultra endurance exercise leading to cardiac biomarkers elevation and the presence of myocardial inflammation and fibrosis using CMR.Methods: 17 recreation athletes (33.5 +/- 6.5 years) were studied before and after a marathon run with troponin, NTproBNP, and CMR. Specific imaging parameters to look for inflammation included T2 weighted images, and T1 weighted spin-echo images before and after an intravenous gadolinium-DTPA to detect myocardial hyperemia secondary to inflammation. Late gadolinium imaging was performed (LGE) to detect any focal regions of replacement fibrosis.Results: Eleven of the 17 participant had elevations of TnI above levels of cut off for myocardial infarction 6 hrs after the marathon (0.075 +/- 0.02, p = 0.007). Left ventricular volumes were reduced post marathon and a small increase in ejection fraction was noted (64 +/- 1% pre, 67 +/- 1.2% post, P = 0.014). Right ventricular volumes, stroke volume, and ejection fraction were unchanged post marathon. No athlete fulfilled criteria for myocardial inflammation based on current criteria. No regions of focal fibrosis were seen in any of the participants.Conclusion: Exercise induced cardiac biomarker release is not associated with any functional changes by CMR or any detectable myocardial inflammation or fibrosis

    Repair at Single Targeted DNA Double-Strand Breaks in Pluripotent and Differentiated Human Cells

    Get PDF
    Differences in ex vivo cell culture conditions can drastically affect stem cell physiology. We sought to establish an assay for measuring the effects of chemical, environmental, and genetic manipulations on the precision of repair at a single DNA double-strand break (DSB) in pluripotent and somatic human cells. DSBs in mammalian cells are primarily repaired by either homologous recombination (HR) or nonhomologous end-joining (NHEJ). For the most part, previous studies of DSB repair in human cells have utilized nonspecific clastogens like ionizing radiation, which are highly nonphysiologic, or assayed repair at randomly integrated reporters. Measuring repair after random integration is potentially confounded by locus-specific effects on the efficiency and precision of repair. We show that the frequency of HR at a single DSB differs up to 20-fold between otherwise isogenic human embryonic stem cells (hESCs) based on the site of the DSB within the genome. To overcome locus-specific effects on DSB repair, we used zinc finger nucleases to efficiently target a DSB repair reporter to a safe-harbor locus in hESCs and a panel of somatic human cell lines. We demonstrate that repair at a targeted DSB is highly precise in hESCs, compared to either the somatic human cells or murine embryonic stem cells. Differentiation of hESCs harboring the targeted reporter into astrocytes reduces both the efficiency and precision of repair. Thus, the phenotype of repair at a single DSB can differ based on either the site of damage within the genome or the stage of cellular differentiation. Our approach to single DSB analysis has broad utility for defining the effects of genetic and environmental modifications on repair precision in pluripotent cells and their differentiated progeny

    Enhanced Notch Activation Is Advantageous but Not Essential for T Cell Lymphomagenesis in Id1 Transgenic Mice

    Get PDF
    T cell lymphoblastic leukemia (T-ALL) is known to be associated with chromosomal abnormalities that lead to aberrant expression of a number of transcription factors such as TAL1, which dimerizes with basic helix-loop-helix (bHLH) E proteins and inhibits their function. Activated Notch receptors also efficiently induce T cell leukemogenesis in mouse models. Interestingly, gain-of-function mutations or cryptic transcription initiation of the Notch1 gene have been frequently found in both human and mouse T-ALL. However, the correlations between these alterations and overall Notch activities or leukemogenesis have not been thoroughly evaluated. Therefore, we made use of our collection of T cell lymphomas developed in transgenic mice expressing Id1, which like TAL1, inhibits E protein function. By comparing expression levels of Notch target genes in Id1-expressing tumors to those in tumors induced by a constitutively active form of Notch1, N1C, we were able to assess the overall activities of Notch pathways and conclude that the majority of Id1-expressing tumors had elevated Notch function to a varying degree. However, 26% of the Id1-expressing tumors had no evidence of enhanced Notch activation, but that did not delay the onset of tumorigenesis. Furthermore, we examined the genetic or epigenetic alterations thought to contribute to ligand-independent activation or protein stabilization of Notch1 and found that some of the Id1-expressing tumors acquired these changes, but they are not uniformly associated with elevated Notch activities in Id1 tumor samples. In contrast, N1C-expressing tumors do not harbor any PEST domain mutations nor exhibit intragenic transcription initiation. Taken together, it appears that Notch activation provides Id1-expressing tumor cells with selective advantages in growth and survival. However, this may not be absolutely essential for lymphomagenesis in Id1 transgenic mice and additional factors could also cooperate with Id1 to induce T cell lymphoma. Therefore, a broad approach is necessary in designing T-ALL therapy
    corecore