163 research outputs found

    Epithelial-to-mesenchymal transition supports ovarian carcinosarcoma tumorigenesis and confers sensitivity to microtubule-targeting with eribulin

    Get PDF
    Ovarian carcinosarcoma (OCS) is an aggressive and rare tumour type with limited treatment options. OCS is hypothesised to develop via the combination theory, with a single progenitor resulting in carcinomatous and sarcomatous components, or alternatively via the conversion theory, with the sarcomatous component developing from the carcinomatous component through epithelial-to-mesenchymal transition (EMT). In this study, we analysed DNA variants from isolated carcinoma and sarcoma components to show that OCS from 18 women is monoclonal. RNA sequencing indicated the carcinoma components were more mesenchymal when compared with pure epithelial ovarian carcinomas, supporting the conversion theory and suggesting that EMT is important in the formation of these tumours. Preclinical OCS models were used to test the efficacy of microtubule-targeting drugs, including eribulin, which has previously been shown to reverse EMT characteristics in breast cancers and induce differentiation in sarcomas. Vinorelbine and eribulin more effectively inhibited OCS growth than standard-of-care platinum-based chemotherapy, and treatment with eribulin reduced mesenchymal characteristics and N-MYC expression in OCS patient-derived xenografts (PDX). Eribulin treatment resulted in an accumulation of intracellular cholesterol in OCS cells, which triggered a down-regulation of the mevalonate pathway and prevented further cholesterol biosynthesis. Finally, eribulin increased expression of genes related to immune activation and increased the intratumoral accumulation of CD8+ T cells, supporting exploration of immunotherapy combinations in the clinic. Together, these data indicate EMT plays a key role in OCS tumourigenesis and support the conversion theory for OCS histogenesis. Targeting EMT using eribulin could help improve OCS patient outcomes

    Complex evolutionary history of the Mexican stoneroller Campostoma ornatum Girard, 1856 (Actinopterygii: Cyprinidae)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Studies of the phylogeography of Mexican species are steadily revealing genetic patterns shared by different species, which will help to unravel the complex biogeographic history of the region. <it>Campostoma ornatum </it>is a freshwater fish endemic to montane and semiarid regions in northwest Mexico and southern Arizona. Its wide range of distribution and the previously observed morphological differentiation between populations in different watersheds make this species a useful model to investigate the biogeographic role of the Sierra Madre Occidental and to disentangle the actions of Pliocene tecto-volcanic processes <it>vs </it>Quaternary climatic change. Our phylogeographic study was based on DNA sequences from one mitochondrial gene (<it>cytb</it>, 1110 bp, n = 285) and two nuclear gene regions (S7 and RAG1, 1822 bp in total, n = 56 and 43, respectively) obtained from 18 to 29 localities, in addition to a morphological survey covering the entire distribution area. Such a dataset allowed us to assess whether any of the populations/lineages sampled deserve to be categorised as an evolutionarily significant unit.</p> <p>Results</p> <p>We found two morphologically and genetically well-differentiated groups within <it>C. ornatum</it>. One is located in the northern river drainages (Yaqui, Mayo, Fuerte, Sonora, Casas Grandes, Santa Clara and Conchos) and another one is found in the southern drainages (Nazas, Aguanaval and Piaxtla). The split between these two lineages took place about 3.9 Mya (CI = 2.1-5.9). Within the northern lineage, there was strong and significant inter-basin genetic differentiation and also several secondary dispersal episodes whit gene homogenization between drainages. Interestingly, three divergent mitochondrial lineages were found in sympatry in two northern localities from the Yaqui river basin.</p> <p>Conclusions</p> <p>Our results indicate that there was isolation between the northern and southern phylogroups since the Pliocene, which was related to the formation of the ancient Nazas River paleosystem, where the southern group originated. Within groups, a complex reticulate biogeographic history for <it>C. ornatum </it>populations emerges, following the taxon pulse theory and mainly related with Pliocene tecto-volcanic processes. In the northern group, several events of vicariance promoted by river or drainage isolation episodes were found, but within both groups, the phylogeographic patterns suggest the occurrence of several events of river capture and fauna interchange. The Yaqui River supports the most diverse populations of <it>C. ornatum</it>, with several events of dispersal and isolation within the basin. Based on our genetic results, we defined three ESUs within <it>C. ornatum </it>as a first attempt to promote the conservation of the evolutionary processes determining the genetic diversity of this species. They will likely be revealed as a valuable tool for freshwater conservation policies in northwest Mexico, where many environmental problems concerning the use of water have rapidly arisen in recent decades.</p

    Nothing Lasts Forever: Environmental Discourses on the Collapse of Past Societies

    Get PDF
    The study of the collapse of past societies raises many questions for the theory and practice of archaeology. Interest in collapse extends as well into the natural sciences and environmental and sustainability policy. Despite a range of approaches to collapse, the predominant paradigm is environmental collapse, which I argue obscures recognition of the dynamic role of social processes that lie at the heart of human communities. These environmental discourses, together with confusion over terminology and the concepts of collapse, have created widespread aporia about collapse and resulted in the creation of mixed messages about complex historical and social processes

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)1.

    Get PDF
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field

    Group Support Systems: experiments with an online system and implications for same-time/different places working

    Get PDF
    This is the author accepted manuscript. The final version is available from Springer via the DOI in this recordWe present an analysis of the Group Explorer Group Support System (GSS) from the perspective of its implementation as technology that can support same-time/different-places group workshops. The purpose of the chapter is to report on our experiences with using a same-time/different places GSS, introduce issues that arise from these experiences, and discuss future prospects. The chapter commences by reviewing our current understanding of GSS and how they support the use of distributed Problem Structuring Methods (PSMs) in both single organization and multi-organization settings. The configuration and use of a cloud-based online version of the GSS is presented that highlights some of the key technological, organisational and facilitation issues involved in supporting distributed PSM workshops. The future development of such online GSS is discussed with a particular focus on two emerging research questions; the future role of the facilitator in online GSS, and the commonalities between online GSS and social media platforms as different-times/different-places group working, such as crowdsourcing, become prevalent in the context of increasing globalisation and the ongoing decentralisation of work environments.Engineering and Physical Sciences Research Council (EPSRC)Natural Environment Research Council (NERC)European Union FP7European Union Horizon 202

    Akt mediated mitochondrial protection in the heart: metabolic and survival pathways to the rescue

    Full text link

    Skeletal muscle wasting and renewal: a pivotal role of myokine IL-6

    Get PDF

    Observation of triple J/ψ meson production in proton-proton collisions

    Get PDF
    Data availability: Tabulated results are provided in the HEPData record for this analysis71. Release and preservation of data used by the CMS Collaboration as the basis for publications is guided by the CMS policy as stated in CMS data preservation, re-use and open access policy.Code availability: The CMS core software is publically available at https://github.com/cms-sw/cmssw.Copyright . Protons consist of three valence quarks, two up-quarks and one down-quark, held together by gluons and a sea of quark-antiquark pairs. Collectively, quarks and gluons are referred to as partons. In a proton-proton collision, typically only one parton of each proton undergoes a hard scattering – referred to as single-parton scattering – leaving the remainder of each proton only slightly disturbed. Here, we report the study of double- and triple-parton scatterings through the simultaneous production of three J/ψ mesons, which consist of a charm quark-antiquark pair, in proton-proton collisions recorded with the CMS experiment at the Large Hadron Collider. We observed this process – reconstructed through the decays of J/ψ mesons into pairs of oppositely charged muons – with a statistical significance above five standard deviations. We measured the inclusive fiducial cross-section to be 272+141−104(stat)±17(syst)fb, and compared it to theoretical expectations for triple-J/ψ meson production in single-, double- and triple-parton scattering scenarios. Assuming factorization of multiple hard-scattering probabilities in terms of single-parton scattering cross-sections, double- and triple-parton scattering are the dominant contributions for the measured process.SCOAP3.Change history: 27 February 2023A Correction to this paper has been published: https://doi.org/10.1038/s41567-023-01992-
    • 

    corecore