59 research outputs found
Comparison of lorazepam alone vs lorazepam, morphine, and perphenazine for cardiac premedication
Robotic-assisted Laparoscopic Partial Nephrectomy (RaLPN): the road to zero ischemia
Oral (Free Paper) Session 2 - Uro-Oncology: Prostate & Kidney: no. OP.2-5OBJECTIVE: Every minute counts in reducing ischemic time in RaLPN. We aim to review outcomes with advancement of clamping techniques from hilar clamping(HC) to parenchymal clamping(PC) and selective arterial clamping(SC) …postprin
Benefits of ultra-fast-track anesthesia in left ventricular assist device implantation: a retrospective, propensity score matched cohort study of a four-year single center experience
Epidural anesthesia and postoperative analgesia with ropivacaine and fentanyl in off-pump coronary artery bypass grafting: a randomized, controlled study
<p>Abstract</p> <p>Background</p> <p>Our aim was to assess the efficacy of thoracic epidural anesthesia (EA) followed by postoperative epidural infusion (EI) and patient-controlled epidural analgesia (PCEA) with ropivacaine/fentanyl in off-pump coronary artery bypass grafting (OPCAB).</p> <p>Methods</p> <p>In a prospective study, 93 patients were scheduled for OPCAB under propofol/fentanyl anesthesia and randomized to three postoperative analgesia regimens aiming at a visual analog scale (VAS) score < 30 mm at rest. The control group (n = 31) received intravenous fentanyl 10 μg/ml postoperatively 3-8 mL/h. After placement of an epidural catheter at the level of Th<sub>2</sub>-Th<sub>4 </sub>before OPCAB, a thoracic EI group (n = 31) received EA intraoperatively with ropivacaine 0.75% 1 mg/kg and fentanyl 1 μg/kg followed by continuous EI of ropivacaine 0.2% 3-8 mL/h and fentanyl 2 μg/mL postoperatively. The PCEA group (n = 31), in addition to EA and EI, received PCEA (ropivacaine/fentanyl bolus 1 mL, lock-out interval 12 min) postoperatively. Hemodynamics and blood gases were measured throughout 24 h after OPCAB.</p> <p>Results</p> <p>During OPCAB, EA decreased arterial pressure transiently, counteracted changes in global ejection fraction and accumulation of extravascular lung water, and reduced the consumption of propofol by 15%, fentanyl by 50% and nitroglycerin by a 7-fold, but increased the requirements in colloids and vasopressors by 2- and 3-fold, respectively (<it>P </it>< 0.05). After OPCAB, PCEA increased PaO<sub>2</sub>/FiO<sub>2 </sub>at 18 h and decreased the duration of mechanical ventilation by 32% compared with the control group (<it>P </it>< 0.05).</p> <p>Conclusions</p> <p>In OPCAB, EA with ropivacaine/fentanyl decreases arterial pressure transiently, optimizes myocardial performance and influences the perioperative fluid and vasoactive therapy. Postoperative EI combined with PCEA improves lung function and reduces time to extubation.</p> <p>Trial Registration</p> <p><a href="http://www.clinicaltrials.gov/ct2/show/NCT01384175">NCT01384175</a></p
Phenomenology and physical origin of shear-localization and shear-banding in complex fluids
We review and compare the phenomenological aspects and physical origin of
shear-localization and shear-banding in various material types, namely
emulsions, suspensions, colloids, granular materials and micellar systems. It
appears that shear-banding, which must be distinguished from the simple effect
of coexisting static-flowing regions in yield stress fluids, occurs in the form
of a progressive evolution of the local viscosity towards two significantly
different values in two adjoining regions of the fluids in which the stress
takes slightly different values. This suggests that from a global point of view
shear-banding in these systems has a common physical origin: two physical
phenomena (for example, in colloids, destructuration due to flow and
restructuration due to aging) are in competition and, depending on the flow
conditions, one of them becomes dominant and makes the system evolve in a
specific direction.Comment: The original publication is available at http://www.springerlink.co
The rheological behaviour of suspensions of fat particles in oil interpreted in terms of a transient-network model
L’administration intrathécale combinée de sufentanil-morphine réduit la durée de l’intubation et améliore l’analgésie lors d’une intervention cardiaque “fast-track”
Quantitative proteomic analyses of dynamic signalling events in cortical neurons undergoing excitotoxic cell death
Excitotoxicity, caused by overstimulation or dysregulation of ionotropic glutamate receptors (iGluRs), is a pathological process directing neuronal death in many neurological disorders. The aberrantly stimulated iGluRs direct massive influx of calcium ions into the affected neurons, leading to changes in expression and phosphorylation of specific proteins to modulate their functions and direct their participation in the signalling pathways that induce excitotoxic neuronal death. To define these pathways, we used quantitative proteomic approaches to identify these neuronal proteins (referred to as the changed proteins) and determine how their expression and/or phosphorylation dynamically changed in association with excitotoxic cell death. Our data, available in ProteomeXchange with identifier PXD008353, identified over 100 changed proteins exhibiting significant alterations in abundance and/or phosphorylation levels at different time points (5-240 min) in neurons after glutamate overstimulation. Bioinformatic analyses predicted that many of them are components of signalling networks directing defective neuronal morphology and functions. Among them, the well-known neuronal survival regulators including mitogen-activated protein kinases Erk1/2, glycogen synthase kinase 3 (GSK3) and microtubule-associated protein (Tau), were selected for validation by biochemical approaches, which confirmed the findings of the proteomic analysis. Bioinformatic analysis predicted Protein Kinase B (Akt), c-Jun kinase (JNK), cyclin-dependent protein kinase 5 (Cdk5), MAP kinase kinase (MEK), Casein kinase 2 (CK2), Rho-activated protein kinase (Rock) and Serum/glucocorticoid-regulated kinase 1 (SGK1) as the potential upstream kinases phosphorylating some of the changed proteins. Further biochemical investigation confirmed the predictions of sustained changes of the activation states of neuronal Akt and CK2 in excitotoxicity. Thus, future investigation to define the signalling pathways directing the dynamic alterations in abundance and phosphorylation of the identified changed neuronal proteins will help elucidate the molecular mechanism of neuronal death in excitotoxicity
- …
