330 research outputs found

    Oral dosing of rodents using a palatable tablet

    Get PDF
    Rationale: Delivering orally bioavailable drugs to rodents is an important component to investigating that route of administration in novel treatments for humans. However, the traditional method of oral gavage requires training, is stressful, and can induce oesophageal damage in rodents. Objectives: To demonstrate a novel administrative technique – palatable gelatine tablets – as a stress-free route of oral delivery. Methods: 24 male Lister hooded rats were sacrificed for brain tissue analysis at varying time-points after jelly administration of 30 mg/kg of the wake-promoting drug modafinil. A second group of 22 female rats were tested on locomotor activity after 30 mg/kg modafinil, or after vehicle jellies, with the locomotor data compared to the brain tissue concentrations at the corresponding times. Results: Modafinil was present in the brain tissue at all time-points, reducing in concentration over time. The pattern of brain tissue modafinil concentration is comparable to previously reported results following oral gavage. Modafinil-treated rats were more active than control rats, with greater activity during the later time-periods – similar to that previously reported following intraperitoneal injection of 40 mg/kg modafinil. Conclusions: Palatable jelly tablets are an effective route of administration of thermally-stable orally-bioavailable compounds, eliminating the stress/discomfort and health risk of oral gavage and presenting as an alternative to previously reported palatable routes of administration where high protein and fat levels may adversely affect appetite for food reward, and uptake rate in the gastrointestinal tract.Publisher PDFPeer reviewe

    Correction: Thermoresponsive polysarcosine-based nanoparticles

    Get PDF
    Correction for ‘Thermoresponsive polysarcosine-based nanoparticles’ by Huayang Yu et al., J. Mater. Chem. B, 2019, 7, 4217–4223

    Laboratory simulations of fluid-induced seismicity, hydraulic fracture, and fluid flow

    Get PDF
    Fluid-induced seismicity has been observed and recorded for decades. Seismic energy necessarily requires a source, which is frequently related to rock fracture either in compression or tension. In both cases, such fracture may be promoted by crustal fluids. In this paper, we review some of the advances in the field of fluid-induced seismicity, with a particular focus on the use and application of new and innovative laboratory methods to better understand the complex, coupled, processes in shallow sub-surface energy extraction applications. We discuss the current state-of-the-art with specific reference to Thermal-Hydraulic-Coupling in volcanotectonic environments, which has a long history of fluid-driven seismic events linked to deep fluid movement. This ranges from local earthquakes to fluid-driven resonance, known as volcanic tremor. More recently so-called non-volcanic tremor has been identified in a range of scenarios where motion at an interface is primarily driven by fluids rather than significant stress release. Finally, we review rock fracture in the tensile regime which occurs naturally and in the engineered environment for developing fractures for the purpose of resource extraction, such as hydraulic fracturing in unconventional hydrocarbon industry or developing Hot-Dry-Rock geothermal reservoirs

    Can we rate public support for democracy in a comparable way? Cross-national equivalence of democratic attitudes in the World Value Survey

    Full text link
    In this study we examine the cross-cultural equivalence of two scales that measure attitudes toward democracy across 36 countries in the World Value Survey (WVS) 2000. We examine the equivalence of these scales in order to explore if we can meaningfully compare democratic attitudes across countries. Multiple group confirmatory factor analyses (MGCFA) is applied to answer this question. The analyses indicate that the scales may be compared but only to a certain extent and not across all the countries. We close this article by discussing the implications of the findings

    Meticulous Doxorubicin Release from pH‐responsive Nanoparticles Entrapped within an Injectable Thermoresponsive Depot.

    Get PDF
    The dual stimuli‐controlled release of doxorubicin from gel‐embedded nanoparticles is reported. Non‐cytotoxic polymer nanoparticles are formed from poly(ethylene glycol)‐ b ‐poly(benzyl glutamate) that, uniquely, contain a central ester link. This connection renders the nanoparticles pH‐responsive, enabling extensive doxorubicin release in acidic solutions (pH 6.5), but not in solutions of physiological pH (pH 7.4). Doxorubicin loaded nanoparticles were found to be stable for at least 31 days and lethal against the three breast cancer cell lines tested. Furthermore, doxorubicin loaded nanoparticles could be incorporated within a thermoresponsive poly(2‐hydroxypropyl methacrylate) gel depot, which forms immediately upon injection of poly(2‐hydroxypropyl methacrylate) in DMSO solution into aqueous solution. The combination of the poly(2‐hydroxypropyl methacrylate) gel and poly(ethylene glycol)‐ b ‐poly(benzyl glutamate) nanoparticles yields an injectable doxorubicin delivery system that facilities near‐complete drug release when maintained at elevated temperatures (37 °C) in acidic solution (pH 6.5). In contrast, negligible payload release occurs when the material is stored at room temperature in non‐acidic solution (pH 7.4). The system has great potential as a vehicle for the prolonged, site‐specific, release of chemotherapeutics

    Correlation of cell growth and heterologous protein production by Saccharomyces cerevisiae

    Get PDF
    With the increasing demand for biopharmaceutical proteins and industrial enzymes, it is necessary to optimize the production by microbial fermentation or cell cultures. Yeasts are well established for the production of a wide range of recombinant proteins, but there are also some limitations; e.g., metabolic and cellular stresses have a strong impact on recombinant protein production. In this work, we investigated the effect of the specific growth rate on the production of two different recombinant proteins. Our results show that human insulin precursor is produced in a growth-associated manner, whereas alpha-amylase tends to have a higher yield on substrate at low specific growth rates. Based on transcriptional analysis, we found that the difference in the production of the two proteins as function of the specific growth rate is mainly due to differences in endoplasmic reticulum processing, protein turnover, cell cycle, and global stress response. We also found that there is a shift at a specific growth rate of 0.1 h(-1) that influences protein production. Thus, for lower specific growth rates, the alpha-amylase and insulin precursor-producing strains present similar cell responses and phenotypes, whereas for higher specific growth rates, the two strains respond differently to changes in the specific growth rate

    Developing international business relationships in a Russian context

    Get PDF
    The collapse of the former Soviet Union has opened up a wealth of business opportunities for companies seeking new markets in the Russian Federation. Despite this, firms intending to do business in Russia have found themselves hampered by cultural differences in business practices and expectations. As Russia integrates into the global economy, understanding such practices and the managerial mindset of business people is crucial for managers who hope to navigate Russia's complex markets. This study draws on the trust literature and adopts quantitative tools to deconstruct the Russian 'Sviazi' system of social capital business networking. We develop a model isolating three dimensions of Sviazi: one an affective or emotional component; the second, a conative component; and the third, a cognitive component. The model provides a useful guide for helping foreign firms to succeed in Russia, while also serving as a basis for further research in the field. Keywords

    Short-Term Exposure to Warm Microhabitats Could Explain Amphibian Persistence with Batrachochytrium dendrobatidis

    Get PDF
    Environmental conditions can alter the outcomes of symbiotic interactions. Many amphibian species have declined due to chytridiomycosis, caused by the pathogenic fungus Batrachochytrium dendrobatidis (Bd), but many others persist despite high Bd infection prevalence. This indicates that Bd's virulence is lower, or it may even be a commensal, in some hosts. In the Australian Wet Tropics, chytridiomycosis extirpated Litoria nannotis from high-elevation rain forests in the early 1990 s. Although the species is recolonizing many sites, no population has fully recovered. Litoria lorica disappeared from all known sites in the early 1990 s and was thought globally extinct, but a new population was discovered in 2008, in an upland dry forest habitat it shares with L. nannotis. All frogs of both species observed during three population censuses were apparently healthy, but most carried Bd. Frogs perch on sun-warmed rocks in dry forest streams, possibly keeping Bd infections below the lethal threshold attained in cooler rain forests. We tested whether short-term elevated temperatures can hamper Bd growth in vitro over one generation (four days). Simulating the temperatures available to frogs on strongly and moderately warmed rocks in dry forests, by incubating cultures at 33°C for one hour daily, reduced Bd growth below that of Bd held at 15°C constantly (representing rain forest habitats). Even small decreases in the exponential growth rate of Bd on hosts may contribute to the survival of frogs in dry forests

    Multidimensional Well-Being and Inequality Across the European Regions with Alternative Interactions Between the Well-Being Dimensions

    Get PDF
    This paper uses recent multidimensional well-being measurements to examine multidimensional well-being and inequality across the European regions in 2000 and 2014 with the use of eleven well-being indicators from the OECD Better Life Index. We use generalized mean aggregation method with alternative parameters to allow different substitutability and complementarity levels between well-being dimensions, which range between perfect substitutability and some degree of complementarity between the dimensions, to examine well-being and inequality across the European regions. Accounting for the interactions between the well-being dimensions matters for the multidimensional well-being and inequality across the European regions. The results show that the multidimensional well-being across the European regions are relatively lower when the dimensions are more seen as complements compared to the case when they are considered to be perfect substitutes. Furthermore, there is also a higher degree of multidimensional inequality across the European regions when the dimensions are considered to have some complementarity. Changes in well-being dimensions between 2000 and 2014 indicates that multidimensional well-being improved and inequality decreased in the personal and community well-being categories, but remained unchanged in material well-being category across the European regions irrespective of interaction levels between well-being dimensions. Policy implications of these multidimensional well-being indices are also evaluated by using these indices to determine the eligible regions for the European Union structural funds where the number eligible regions shows some variation depending on whether the dimensions are perfect substitutes or more of complements

    Seasonal Pattern of Batrachochytrium dendrobatidis Infection and Mortality in Lithobates areolatus: Affirmation of Vredenburg's “10,000 Zoospore Rule”

    Get PDF
    To fully comprehend chytridiomycosis, the amphibian disease caused by the chytrid fungus Batrachochytrium dendrobatidis (Bd), it is essential to understand how Bd affects amphibians throughout their remarkable range of life histories. Crawfish Frogs (Lithobates areolatus) are a typical North American pond-breeding species that forms explosive spring breeding aggregations in seasonal and semipermanent wetlands. But unlike most species, when not breeding Crawfish Frogs usually live singly—in nearly total isolation from conspecifics—and obligately in burrows dug by crayfish. Crayfish burrows penetrate the water table, and therefore offer Crawfish Frogs a second, permanent aquatic habitat when not breeding. Over the course of two years we sampled for the presence of Bd in Crawfish Frog adults. Sampling was conducted seasonally, as animals moved from post-winter emergence through breeding migrations, then back into upland burrow habitats. During our study, 53% of Crawfish Frog breeding adults tested positive for Bd in at least one sample; 27% entered breeding wetlands Bd positive; 46% exited wetlands Bd positive. Five emigrating Crawfish Frogs (12%) developed chytridiomycosis and died. In contrast, all 25 adult frogs sampled while occupying upland crayfish burrows during the summer tested Bd negative. One percent of postmetamorphic juveniles sampled were Bd positive. Zoospore equivalents/swab ranged from 0.8 to 24,436; five out of eight frogs with zoospore equivalents near or >10,000 are known to have died. In summary, Bd infection rates in Crawfish Frog populations ratchet up from near zero during the summer to over 25% following overwintering; rates then nearly double again during and just after breeding—when mortality occurs—before the infection wanes during the summer. Bd-negative postmetamorphic juveniles may not be exposed again to this pathogen until they take up residence in crayfish burrows, or until their first breeding, some years later
    corecore