9,739 research outputs found

    Complete gate control of supercurrent in graphene p-n junctions

    Get PDF
    In a conventional Josephson junction of graphene, the supercurrent is not turned off even at the charge neutrality point, impeding further development of superconducting quantum information devices based on graphene. Here we fabricate bipolar Josephson junctions of graphene, in which a p-n potential barrier is formed in graphene with two closely spaced superconducting contacts, and realize supercurrent ON/OFF states using electrostatic gating only. The bipolar Josephson junctions of graphene also show fully gate-driven macroscopic quantum tunnelling behaviour of Josephson phase particles in a potential well, where the confinement energy is gate tuneable. We suggest that the supercurrent OFF state is mainly caused by a supercurrent dephasing mechanism due to a random pseudomagnetic field generated by ripples in graphene, in sharp contrast to other nanohybrid Josephson junctions. Our study may pave the way for the development of new gate-tuneable superconducting quantum information devices.open114344sciescopu

    Antimicrobial resistance and antimicrobial use animal monitoring policies in Europe: Where are we?

    Get PDF
    The World Health Organization has recognized antimicrobial resistance as one of the top three threats to human health. Any use of antibiotics in animals will ultimately affect humans and vice versa. Appropriate monitoring of antimicrobial use and resistance has been repeatedly emphasized along with the need for global policies. Under the auspices of the European Union research project, EFFORT, we mapped antimicrobial use and resistance monitoring programs in ten European countries. We then compared international and European guidelines and policies. In resistance monitoring, we did not find important differences between countries. Current resistance monitoring systems are focused on food animal species (using fecal samples). They ignore companion animals. The scenario is different for monitoring antibiotics use. Recently, countries have tried to harmonize methodologies, but reporting of antimicrobial use remains voluntary. We therefore identified a need for stronger policies

    Molecular and morphological characterization of Pyricularia and allied genera

    Get PDF
    The phylogenetic relationships of Pyricularia species and species from related genera were established from sequences of the internal transcribed spacer ribosomal RNA gene. Phylogenetic analysis disclosed a consistent correlation with spore morphology. Most Pyricularia species studied, and two species of Dactylaria that have obpyriform conidia, fell within the Magnaporthaceae cluster with high bootstrap support. Pyricularia variabilis was more related to Dactylaria, Tumularia or Ochroconis species than to the Magnaporthaceae. Dactylaria and species of Nakataea, Ochroconis, Pyriculariopsis and Tumularia were distinct from the Magnaporthaceae, and the genus Dactylaria is polyphyletic. The combination of morphological and molecular characters, such as spore morphology and ITS ribosomal DNA sequences data, suggested that conidial shape could be a primary character to distinguish Pyricularia from related genera.published_or_final_versio

    Tumour invasiveness, the local and systemic environment and the basis of staging systems in colorectal cancer

    Get PDF
    background: The present study aimed to examine the relationship between tumour invasiveness (T stage), the local and systemic environment and cancer-specific survival (CSS) of patients with primary operable colorectal cancer. methods: The tumour microenvironment was examined using measures of the inflammatory infiltrate (Klintrup-Makinen (KM) grade and Immunoscore), tumour stroma percentage (TSP) and tumour budding. The systemic inflammatory environment was examined using modified Glasgow Prognostic Score (mGPS) and neutrophil:lymphocyte ratio (NLR). A 5-year CSS was examined. results: A total of 331 patients were included. Increasing T stage was associated with colonic primary, N stage, poor differentiation, margin involvement and venous invasion (P<0.05). T stage was significantly associated with KM grade (P=0.001), Immunoscore (P=0.016), TSP (P=0.006), tumour budding (P<0.001), and elevated mGPS and NLR (both P<0.05). In patients with T3 cancer, N stage stratified survival from 88 to 64%, whereas Immunoscore and budding stratified survival from 100 to 70% and from 91 to 56%, respectively. The Glasgow Microenvironment Score, a score based on KM grade and TSP, stratified survival from 93 to 58%. conclusions: Although associated with increasing T stage, local and systemic tumour environment characteristics, and in particular Immunoscore, budding, TSP and mGPS, are stage-independent determinants of survival and may be utilised in the staging of patients with primary operable colorectal cancer

    A geometric network model of intrinsic grey-matter connectivity of the human brain

    Get PDF
    Network science provides a general framework for analysing the large-scale brain networks that naturally arise from modern neuroimaging studies, and a key goal in theoretical neuro- science is to understand the extent to which these neural architectures influence the dynamical processes they sustain. To date, brain network modelling has largely been conducted at the macroscale level (i.e. white-matter tracts), despite growing evidence of the role that local grey matter architecture plays in a variety of brain disorders. Here, we present a new model of intrinsic grey matter connectivity of the human connectome. Importantly, the new model incorporates detailed information on cortical geometry to construct ‘shortcuts’ through the thickness of the cortex, thus enabling spatially distant brain regions, as measured along the cortical surface, to communicate. Our study indicates that structures based on human brain surface information differ significantly, both in terms of their topological network characteristics and activity propagation properties, when compared against a variety of alternative geometries and generative algorithms. In particular, this might help explain histological patterns of grey matter connectivity, highlighting that observed connection distances may have arisen to maximise information processing ability, and that such gains are consistent with (and enhanced by) the presence of short-cut connections

    New Mechanics of Traumatic Brain Injury

    Full text link
    The prediction and prevention of traumatic brain injury is a very important aspect of preventive medical science. This paper proposes a new coupled loading-rate hypothesis for the traumatic brain injury (TBI), which states that the main cause of the TBI is an external Euclidean jolt, or SE(3)-jolt, an impulsive loading that strikes the head in several coupled degrees-of-freedom simultaneously. To show this, based on the previously defined covariant force law, we formulate the coupled Newton-Euler dynamics of brain's micro-motions within the cerebrospinal fluid and derive from it the coupled SE(3)-jolt dynamics. The SE(3)-jolt is a cause of the TBI in two forms of brain's rapid discontinuous deformations: translational dislocations and rotational disclinations. Brain's dislocations and disclinations, caused by the SE(3)-jolt, are described using the Cosserat multipolar viscoelastic continuum brain model. Keywords: Traumatic brain injuries, coupled loading-rate hypothesis, Euclidean jolt, coupled Newton-Euler dynamics, brain's dislocations and disclinationsComment: 18 pages, 1 figure, Late

    Sign-reversal of the in-plane resistivity anisotropy in hole-doped iron pnictides

    Full text link
    The in-plane anisotropy of the electrical resistivity across the coupled orthorhombic and magnetic transitions of the iron pnictides has been extensively studied in the parent and electron-doped compounds. All these studies universally show that the resistivity ρa\rho_{a} across the long orthorhombic axis aOa_{O} - along which the spins couple antiferromagnetically below the magnetic transition temperature - is smaller than the resistivity ρb\rho_{b} of the short orthorhombic axis bOb_{O}, i. e. ρa<ρb\rho_{a}<\rho_{b}. Here we report that in the hole-doped compounds Ba1x_{1-x}Kx_{x}Fe2_{2}As2_{2}, as the doping level increases, the resistivity anisotropy initially becomes vanishingly small, and eventually changes sign for sufficiently large doping, i. e. ρb<ρa\rho_{b}<\rho_{a}. This observation is in agreement with a recent theoretical prediction that considers the anisotropic scattering of electrons by spin-fluctuations in the orthorhombic/nematic state.Comment: This paper has been replaced by the new version offering new explanation of the experimental results first reported her

    Ripple Texturing of Suspended Graphene Atomic Membranes

    Full text link
    Graphene is the nature's thinnest elastic membrane, with exceptional mechanical and electrical properties. We report the direct observation and creation of one-dimensional (1D) and 2D periodic ripples in suspended graphene sheets, using spontaneously and thermally induced longitudinal strains on patterned substrates, with control over their orientations and wavelengths. We also provide the first measurement of graphene's thermal expansion coefficient, which is anomalously large and negative, ~ -7x10^-6 K^-1 at 300K. Our work enables novel strain-based engineering of graphene devices.Comment: 15 pages, 4 figure

    Two-channel Kondo effect and renormalization flow with macroscopic quantum charge states

    Full text link
    Many-body correlations and macroscopic quantum behaviors are fascinating condensed matter problems. A powerful test-bed for the many-body concepts and methods is the Kondo model which entails the coupling of a quantum impurity to a continuum of states. It is central in highly correlated systems and can be explored with tunable nanostructures. Although Kondo physics is usually associated with the hybridization of itinerant electrons with microscopic magnetic moments, theory predicts that it can arise whenever degenerate quantum states are coupled to a continuum. Here we demonstrate the previously elusive `charge' Kondo effect in a hybrid metal-semiconductor implementation of a single-electron transistor, with a quantum pseudospin-1/2 constituted by two degenerate macroscopic charge states of a metallic island. In contrast to other Kondo nanostructures, each conduction channel connecting the island to an electrode constitutes a distinct and fully tunable Kondo channel, thereby providing an unprecedented access to the two-channel Kondo effect and a clear path to multi-channel Kondo physics. Using a weakly coupled probe, we reveal the renormalization flow, as temperature is reduced, of two Kondo channels competing to screen the charge pseudospin. This provides a direct view of how the predicted quantum phase transition develops across the symmetric quantum critical point. Detuning the pseudospin away from degeneracy, we demonstrate, on a fully characterized device, quantitative agreement with the predictions for the finite-temperature crossover from quantum criticality.Comment: Letter (5 pages, 4 figures) and Methods (10 pages, 6 figures

    30 inch Roll-Based Production of High-Quality Graphene Films for Flexible Transparent Electrodes

    Full text link
    We report that 30-inch scale multiple roll-to-roll transfer and wet chemical doping considerably enhance the electrical properties of the graphene films grown on roll-type Cu substrates by chemical vapor deposition. The resulting graphene films shows a sheet resistance as low as ~30 Ohm/sq at ~90 % transparency which is superior to commercial transparent electrodes such as indium tin oxides (ITO). The monolayer of graphene shows sheet resistances as low as ~125 Ohm/sq with 97.4% optical transmittance and half-integer quantum Hall effect, indicating the high-quality of these graphene films. As a practical application, we also fabricated a touch screen panel device based on the graphene transparent electrodes, showing extraordinary mechanical and electrical performances
    corecore