58 research outputs found

    The behavior of grain boundaries in the Fe-based superconductors

    Full text link
    The Fe-based superconductors (FBS) are an important new class of superconducting materials. As with any new superconductor with a high transition temperature and upper critical field, there is a need to establish what their applications potential might be. Applications require high critical current densities, so the usefulness of any new superconductor is determined both by the capability to develop strong vortex pinning and by the absence or ability to overcome any strong current-limiting mechanisms of which grain boundaries in the cuprates are a cautionary example. In this review we first consider the positive role that grain boundary properties play in the metallic, low temperature superconductors and then review the theoretical background and current experimental data relating to the properties of grain boundaries in FBS polycrystals, bi-crystal thin films, and wires. Based on this evidence, we conclude that grain boundaries in FBS are weak linked in a qualitatively similar way to grain boundaries in the cuprate superconductors, but also that the effects are a little less marked. Initial experiments with the textured substrates used for cuprate coated conductors show similar benefit for the critical current density of FBS thin films too. We also note that the particular richness of the pairing symmetry and the multiband parent state in FBS may provide opportunities for grain boundary modification as a better understanding of their pairing state and grain boundary properties are developed.Comment: To appear in Reports on Progress in Physic

    New Fe-based superconductors: properties relevant for applications

    Full text link
    Less than two years after the discovery of high temperature superconductivity in oxypnictide LaFeAs(O,F) several families of superconductors based on Fe layers (1111, 122, 11, 111) are available. They share several characteristics with cuprate superconductors that compromise easy applications, such as the layered structure, the small coherence length, and unconventional pairing, On the other hand the Fe-based superconductors have metallic parent compounds, and their electronic anisotropy is generally smaller and does not strongly depend on the level of doping, the supposed order parameter symmetry is s wave, thus in principle not so detrimental to current transmission across grain boundaries. From the application point of view, the main efforts are still devoted to investigate the superconducting properties, to distinguish intrinsic from extrinsic behaviours and to compare the different families in order to identify which one is the fittest for the quest for better and more practical superconductors. The 1111 family shows the highest Tc, huge but also the most anisotropic upper critical field and in-field, fan-shaped resistive transitions reminiscent of those of cuprates, while the 122 family is much less anisotropic with sharper resistive transitions as in low temperature superconductors, but with about half the Tc of the 1111 compounds. An overview of the main superconducting properties relevant to applications will be presented. Upper critical field, electronic anisotropy parameter, intragranular and intergranular critical current density will be discussed and compared, where possible, across the Fe-based superconductor families

    Enhancement of the high-field critical current density of superconducting MgB2 by proton irradiation

    Full text link
    A relatively high critical temperature, Tc, approaching 40 K, places the recently-discovered superconductor magnesium diboride (MgB2) intermediate between the families of low- and copper-oxide-based high-temperature superconductors (HTS). Supercurrent flow in MgB2 is unhindered by grain boundaries, unlike the HTS materials. Thus, long polycrystalline MgB2 conductors may be easier to fabricate, and so could fill a potentially important niche of applications in the 20 to 30 K temperature range. However, one disadvantage of MgB2 is that in bulk material the critical current density, Jc, appears to drop more rapidly with increasing magnetic field than it does in the HTS phases. The magnitude and field dependence of Jc are related to the presence of structural defects that can "pin" the quantised magnetic vortices that permeate the material, and prevent them from moving under the action of the Lorentz force. Vortex studies suggest that it is the paucity of suitable defects in MgB2 that causes the rapid decay of Jc with field. Here we show that modest levels of atomic disorder, induced by proton irradiation, enhance the pinning, and so increase Jc significantly at high fields. We anticipate that chemical doping or mechanical processing should be capable of generating similar levels of disorder, and so achieve technologically-attractive performance in MgB2 by economically-viable routes.Comment: 5 pages, 4 figures, to be published in Nature (in press

    Thin Film Magnesium Boride Superconductor with Very High Critical Current Density and Enhanced Irreversibility Field

    Full text link
    The discovery of superconductivity at 39 K in magnesium diboride offers the possibility of a new class of low-cost, high-performance superconducting materials for magnets and electronic applications. With twice the critical temperature of Nb_3Sn and four times that of Nb-Ti alloy, MgB_2 has the potential to reach much higher fields and current densities than either of these technological superconductors. A vital prerequisite, strongly linked current flow, has already been demonstrated even at this early stage. One possible drawback is the observation that the field at which superconductivity is destroyed is modest. Further, the field which limits the range of practical applications, the irreversibility field H*(T), is ~7 T at liquid helium temperature (4.2 K), significantly lower than ~10 T for Nb-Ti and ~20 T for Nb_3Sn. Here we show that MgB_2 thin films can exhibit a much steeper temperature dependence of H*(T) than is observed in bulk materials, yielding H*(4.2 K) above 14 T. In addition, very high critical current densities at 4.2 K, 1 MA/cm_2 at 1 T and 10_5 A/cm_2 at 10 T, are possible. These data demonstrate that MgB_2 has credible potential for high-field superconducting applications.Comment: 4 pages pdf, submitted to Nature 3/20/0

    To use or not to use cool superconductors?

    Full text link
    The high critical temperature and magnetic field in cuprates and Fe-based superconductors are not enough to assure applications at higher temperatures. Making these superconductors useful involves complex and expensive technologies to address many conflicting physics and materials requirements

    YBaCuO-Coated High-Jc Conductors

    No full text
    • …
    corecore