75 research outputs found

    Enhancing methane production from lignocellulosic biomass by combined steam‑explosion pretreatment and bioaugmentation with cellulolytic bacterium Caldicellulosiruptor bescii

    Get PDF
    Background: Biogas production from lignocellulosic biomass is generally considered to be challenging due to the recalcitrant nature of this biomass. In this study, the recalcitrance of birch was reduced by applying steam-explosion (SE) pretreatment (210 °C and 10 min). Moreover, bioaugmentation with the cellulolytic bacterium Caldicellulosiruptor bescii was applied to possibly enhance the methane production from steam-exploded birch in an anaerobic digestion (AD) process under thermophilic conditions (62 °C). Results: Overall, the combined SE and bioaugmentation enhanced the methane yield up to 140% compared to untreated birch, while SE alone contributed to the major share of methane enhancement by 118%. The best methane improvement of 140% on day 50 was observed in bottles fed with pretreated birch and bioaugmentation with lower dosages of C. bescii (2 and 5% of inoculum volume). The maximum methane production rate also increased from 4-mL CH4/ g VS (volatile solids)/day for untreated birch to 9-14-mL CH4/ g VS/day for steam-exploded birch with applied bioaugmentation. Bioaugmentation was particularly effective for increasing the initial methane production rate of the pretreated birch yielding 21-44% more methane than the pretreated birch without applied bioaugmentation. The extent of solubilization of the organic matter was increased by more than twofold when combined SE pretreatment and bioaugmentation was used in comparison with the methane production from untreated birch. The beneficial effects of SE and bioaugmentation on methane yield indicated that biomass recalcitrance and hydrolysis step are the limiting factors for efficient AD of lignocellulosic biomass. Microbial community analysis by 16S rRNA amplicon sequencing showed that the microbial community composition was altered by the pretreatment and bioaugmentation processes. Notably, the enhanced methane production by pretreatment and bioaugmentation was well correlated with the increase in abundance of key bacterial and archaeal communities, particularly the hydrolytic bacterium Caldicoprobacter, several members of syntrophic acetate oxidizing bacteria and the hydrogenotrophic Methanothermobacter. Conclusion: Our findings demonstrate the potential of combined SE and bioaugmentation for enhancing methane production from lignocellulosic biomass

    Treatment of synthetic textile wastewater containing dye mixtures with microcosms

    Get PDF
    The aim was to assess the ability of microcosms (laboratory-scale shallow ponds) as a post polishing stage for the remediation of artificial textile wastewater comprising two commercial dyes (basic red 46 (BR46) and reactive blue 198 (RB198)) as a mixture. The objectives were to evaluate the impact of Lemna minor L. (common duckweed) on the water quality outflows; the elimination of dye mixtures, organic matter, and nutrients; and the impact of synthetic textile wastewater comprising dye mixtures on the L. minor plant growth. Three mixtures were prepared providing a total dye concentration of 10 mg/l. Findings showed that the planted simulated ponds possess a significant (p < 0.05) potential for improving the outflow characteristics and eliminate dyes, ammonium-nitrogen (NH4-N), and nitrate-nitrogen (NO3-N) in all mixtures compared with the corresponding unplanted ponds. The removal of mixed dyes in planted ponds was mainly due to phyto-transformation and adsorption of BR46 with complete aromatic amine mineralisation. For ponds containing 2 mg/l of RB198 and 8 mg/l of BR46, removals were around 53%, which was significantly higher than those for other mixtures: 5 mg/l of RB198 and 5 mg/l of BR46 and 8 mg/l of RB198 and 2 mg/l of BR46 achieved only 41 and 26% removals, respectively. Dye mixtures stopped the growth of L. minor, and the presence of artificial wastewater reduced their development

    Decolorization and partial mineralization of a polyazo dye by Bacillus firmus immobilized within tubular polymeric gel

    Get PDF
    The degradation of C.I. Direct red 80, a polyazo dye, was investigated using Bacillus firmus immobilized by entrapment in tubular polymeric gel. This bacterial strain was able to completely decolorize 50 mg/L of C.I. Direct red 80 under anoxic conditions within 12 h and also degrade the reaction intermediates (aromatic amines) during the subsequent 12 h under aerobic conditions. The tubular gel harboring the immobilized cells consisted of anoxic and aerobic regions integrated in a single unit which was ideal for azo dye degradation studies. Results obtained show that effective dye decolorization (97.8%), chemical oxygen demand (COD) reduction (91.7%) and total aromatic amines removal were obtained in 15 h with the immobilized bacterial cell system whereas for the free cells, a hydraulic residence time of 24 h was required for an equivalent performance in a sequential anoxic and aerobic process. Repeated-batch experiments indicate the immobilized cells could decolorize C.I. Direct red 80 and reduce medium COD in five successive batch runs with enhanced activity obtained after each consecutive run, thus suggesting its stability and potential for repeated use in wastewater treatment. UV–visible spectrophotometry and HPLC analysis were used to confirm the partial mineralization of the dye. Data from this study could be used as a reference for the development of effective industrial scale biotechnological process for the removal of dyes and their metabolites in textile wastewater

    Optimal Use of Vitamin D When Treating Osteoporosis

    Get PDF
    Inadequate serum 25-hydroxyvitamin D (25[OH]D) concentrations are associated with muscle weakness, decreased physical performance, and increased propensity in falls and fractures. This paper discusses several aspects with regard to vitamin D status and supplementation when treating patients with osteoporosis in relation to risks and prevention of falls and fractures. Based on evidence from literature, adequate supplementation with at least 700 IU of vitamin D, preferably cholecalciferol, is required for improving physical function and prevention of falls and fractures. Additional calcium supplementation may be considered when dietary calcium intake is below 700 mg/day. For optimal bone mineral density response in patients treated with antiresorptive or anabolic therapy, adequate vitamin D and calcium supplementation is also necessary. Monitoring of 25(OH)D levels during follow-up and adjustment of vitamin D supplementation should be considered to reach and maintain adequate serum 25(OH)D levels of at least 50 nmol/L, preferably greater than 75 nmol/L in all patients

    Adenomyoepithelioma of the breast: A proposal for classification

    Get PDF
    Breast lesions with a prominent myoepithelial cell component constitute a heterogeneous group of benign and malignant neoplastic proliferations. These lesions are often dual epithelial‐myoepithelial but may be purely myoepithelial cell in nature. Benign epithelial‐myoepithelial lesions typically maintain the morphology and immunophenotype of the normal bilayer epithelial myoepithelial structures. However, the distinction between the two cell components is not always clear‐cut in malignant lesions in which the histogenesis of myoepithelial cells remains uncertain. Neoplastic biphasic epithelial‐myoepithelial lesions of the breast include adenomyoepithelioma (AME), pleomorphic adenoma and adenoid cystic carcinoma. Four histological patterns of classical AME have been described: tubular, lobulated, spindle cell and adenosis variants. Overlapping patterns occur and some AMEs display an intraductal papillary pattern that may represent a fifth variant. AME can be benign or malignant. Classical AME may show atypical features, which are not sufficient for the diagnosis of malignancy (atypical AME). Atypical AME is recognised as a lesion of uncertain malignant potential with limited metastatic capability. Based on the histological features, we propose a classification of malignant AME (M‐AME) into three variants: M‐AME in situ, M‐AME invasive and AME with invasive carcinoma. In this review, we provide an overview of myoepithelial lesions of the breast focusing on the classification of AME to improve not only the consistency of reporting but also help guide further management decision making

    Crystal and molecular structure of a synthetic compound related to the Penicillins and Cephalosporins, 3-BenzyS 7-t-Butyl 2,2-DimethyI-8-oxo-4-thia-1-aza-6aH-bicycfo[4.2.0]octane-3b,13; 7a-dicarboxylate

    No full text
    An intermediate obtained by Lowe and Ramsay in the synthesis of a homopenicillin has been shown by X-ray analysis to have a structure including a Beta-lactam ring fused to a thiomorpholine ring carrying 2.2-dimethyl and13; 3-benzyloxycarbonyl substituents. The compound crystallises in the space group P2/c, with Z=4 in the unit13; cell of dimensions Alpha= 19.160, 6= 6.369. c = 19.052 A. Beta= 111.59. The crystal structure was solved from13; diffractometer data by the symbolic addition method and refined to an R value of 5.16% for 2697 independent reflections by iterative block-diagonal least-squares procedures. The central six-membered ring exists in a13; distorted chair form and is oriented at 140.8xB0; to the fused Beta-lactam ring
    corecore