11 research outputs found

    Microbial transformations of selenite by methane-oxidizing bacteria

    Get PDF
    Abstract Methane oxidizing bacteria are well known for their role in the global methane cycle and their potential for microbial transformation of wide range of hydrocarbon and chlorinated hydrocarbon pollution. Recently, it has also emerged that methane-oxidizing bacteria interact with inorganic pollutants in the environment. Here we report what we believe to be the first study of the interaction of pure strains of methane-oxidizing bacteria with selenite. Results indicate that the commonly used laboratory model strains of methane oxidizing bacteria, Methylococcus capsulatus (Bath) and Methylosinus trichosporium OB3b are both able to reduce the toxic selenite (SeO32-) but not selenate (SeO42-) to red spherical nanoparticulate elemental selenium (Se0), which was characterised via EDX and EXAFS. The cultures also produced volatile selenium-containing species, which suggests that both strains may have an additional activity that can either transform Se0 or selenite into volatile methylated forms of selenium. Transmission electron microscopy (TEM) measurements and experiments with the cell fractions: cytoplasm, cell wall and cell membrane show that the nanoparticles are formed mainly on the cell wall. Collectively these results are promising for the use of methane-oxidizing bacteria for bioremediation or suggest possible uses in the production of selenium nanoparticles for biotechnology

    Biogeographical patterns and co-occurrence of pathogenic infection across island populations of Berthelot’s pipit (Anthus berthelotii)

    No full text
    Pathogens can exert strong selective forces upon host populations. However, before we can make any predictions about the consequences of pathogen-mediated selection, we ?rst need to determine whether patterns of pathogen distribution are consistent over spatiotemporal scales. We used molecular techniques to screen for a variety of blood pathogens (avian malaria, pox and trypanosomes) over a three-year time period across 13 island populations of the Berthelot’s pipit (Anthus berthelotii). This species has only recently dispersed across its range in the North Atlantic, with little subsequent migration, providing an ideal opportunity to examine the causes and effects of pathogenic infection in populations in the early stages of differentiation. We screened 832 individuals, and identi?ed two strains of Plasmodium, four strains of Leucocytozoon, and one pox strain. We found strong differences in pathogen prevalence across populations, ranging from 0 to 65%, and while some ?uctuations in prevalence occurred, these differences were largely stable over the time period studied. Smaller, more isolated islands harboured fewer pathogen strains than larger, less isolated islands, indicating that at the population level, colonization and extinction play an important role in determining pathogen distribution. Individual-level analyses con?rmed the island effect, and also revealed a positive association between Plasmodium and pox infection, which could have arisen due to dual transmission of the pathogens by the same vectors, or because one pathogen lowers resistance to the other. Our ?ndings, combined with an effect of infection on host body condition, suggest that Berthelot’s pipits are subject to different levels of pathogen-mediated selection both across and within populations, and that these selective pressures are consistent over time

    Diseases of the Fallopian Tube

    No full text
    corecore