46 research outputs found

    Perineal descent and patients’ symptoms of anorectal dysfunction, pelvic organ prolapse, and urinary incontinence

    Get PDF
    Contains fulltext : 89793.pdf (publisher's version ) (Closed access)INTRODUCTION AND HYPOTHESIS: The aim of this dynamic magnetic resonance (MR) imaging study was to assess the relation between the position and mobility of the perineum and patients' symptoms of pelvic floor dysfunction. METHODS: Patients' symptoms were measured with the use of validated questionnaires. Univariate logistic regression analyses were used to study the relationship between the questionnaires domain scores and the perineal position on dynamic MR imaging, as well as baseline characteristics (age, body mass index, and parity). RESULTS: Sixty-nine women were included in the analysis. Only the domain score genital prolapse was associated with the perineal position on dynamic MR imaging. This association was strongest at rest. CONCLUSIONS: Pelvic organ prolapse symptoms were associated with the degree of descent of the perineum on dynamic MR imaging. Perineal descent was not related to anorectal and/or urinary incontinence symptoms.1 juni 201

    Association of Tat with Promoters of PTEN and PP2A Subunits Is Key to Transcriptional Activation of Apoptotic Pathways in HIV-Infected CD4+ T Cells

    Get PDF
    Apoptosis in HIV-1-infected CD4+ primary T cells is triggered by the alteration of the PI3K and p53 pathways, which converge on the FOXO3a transcriptional activator. Tat alone can cause activation of FOXO3a and of its proapoptotic target genes. To understand how Tat affects this pathway, we carried out ChIP-Chip experiments with Tat. Tat associates with the promoters of PTEN and two PP2A subunit genes, but not with the FOXO3a promoter. PTEN and PP2A encode phosphatases, whose levels and activity are increased when Tat is expressed. They counteract phosphorylation of Akt1 and FOXO3a, and so activate transcriptional activity of FOXO3a. FOXO3a promotes increased transcription of Egr-1, which can further stimulate the transcription of PTEN, thereby reinforcing the pathway that leads to FOXO3a transcriptional activation. RNAi experiments support the role of PTEN and PP2A in the initiation of the Tat-mediated cascade, which is critical to apoptosis. The increased accumulation of PTEN and PP2A subunit mRNAs during Tat expression is more likely to be the result of increased transcription initiation and not relief of promoter-proximal pausing of RNAPII. The Tat-PTEN and -PP2A promoter interactions provide a mechanistic explanation of Tat-mediated apoptosis in CD4+ T cells

    Chemical genetics strategies for identification of molecular targets

    Get PDF
    Chemical genetics is an emerging field that can be used to study the interactions of chemical compounds, including natural products, with proteins. Usually, the identification of molecular targets is the starting point for studying a drug’s mechanism of action and this has been a crucial step in understanding many biological processes. While a great variety of target identification methods have been developed over the last several years, there are still many bioactive compounds whose target proteins have not yet been revealed because no routine protocols can be adopted. This review contains information concerning the most relevant principles of chemical genetics with special emphasis on the different genomic and proteomic approaches used in forward chemical genetics to identify the molecular targets of the bioactive compounds, the advantages and disadvantages of each and a detailed list of successful examples of molecular targets identified with these approaches

    The supernatural characters and powers of sacred trees in the Holy Land

    Get PDF
    This article surveys the beliefs concerning the supernatural characteristics and powers of sacred trees in Israel; it is based on a field study as well as a survey of the literature and includes 118 interviews with Muslims and Druze. Both the Muslims and Druze in this study attribute supernatural dimensions to sacred trees which are directly related to ancient, deep-rooted pagan traditions. The Muslims attribute similar divine powers to sacred trees as they do to the graves of their saints; the graves and the trees are both considered to be the abode of the soul of a saint which is the source of their miraculous powers. Any violation of a sacred tree would be strictly punished while leaving the opportunity for atonement and forgiveness. The Druze, who believe in the transmigration of souls, have similar traditions concerning sacred trees but with a different religious background. In polytheistic religions the sacred grove/forest is a centre of the community's official worship; any violation of the trees is regarded as a threat to the well being of the community. Punishments may thus be collective. In the monotheistic world (including Christianity, Islam and Druze) the pagan worship of trees was converted into the worship/adoration of saints/prophets; it is not a part of the official religion but rather a personal act and the punishments are exerted only on the violating individual

    In vitro nuclear interactome of the HIV-1 Tat protein

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>One facet of the complexity underlying the biology of HIV-1 resides not only in its limited number of viral proteins, but in the extensive repertoire of cellular proteins they interact with and their higher-order assembly. HIV-1 encodes the regulatory protein Tat (86–101aa), which is essential for HIV-1 replication and primarily orchestrates HIV-1 provirus transcriptional regulation. Previous studies have demonstrated that Tat function is highly dependent on specific interactions with a range of cellular proteins. However they can only partially account for the intricate molecular mechanisms underlying the dynamics of proviral gene expression. To obtain a comprehensive nuclear interaction map of Tat in T-cells, we have designed a proteomic strategy based on affinity chromatography coupled with mass spectrometry.</p> <p>Results</p> <p>Our approach resulted in the identification of a total of 183 candidates as Tat nuclear partners, 90% of which have not been previously characterised. Subsequently we applied <it>in silico </it>analysis, to validate and characterise our dataset which revealed that the Tat nuclear interactome exhibits unique signature(s). First, motif composition analysis highlighted that our dataset is enriched for domains mediating protein, RNA and DNA interactions, and helicase and ATPase activities. Secondly, functional classification and network reconstruction clearly depicted Tat as a polyvalent protein adaptor and positioned Tat at the nexus of a densely interconnected interaction network involved in a range of biological processes which included gene expression regulation, RNA biogenesis, chromatin structure, chromosome organisation, DNA replication and nuclear architecture.</p> <p>Conclusion</p> <p>We have completed the <it>in vitro </it>Tat nuclear interactome and have highlighted its modular network properties and particularly those involved in the coordination of gene expression by Tat. Ultimately, the highly specialised set of molecular interactions identified will provide a framework to further advance our understanding of the mechanisms of HIV-1 proviral gene silencing and activation.</p

    Epidemiology and etiology of Parkinson’s disease: a review of the evidence

    Full text link
    corecore