70 research outputs found

    Conservation of the role of INNER NO OUTER in development of unitegmic ovules of the Solanaceae despite a divergence in protein function

    Get PDF
    The P-SlINO::SlINO-GFP transgene continues to be expressed after fertilization during the onset of fruit development. A-C: Ovules from P-SlINO::SlINO-GFP plants. D, E: Ovules from control plants. Images A (confocal) and B (DIC overlaid with GFP channel) show expression in the outer cell layer in an ovule post-anthesis. C-E are images of the surface cells of the integument of ovules taken from 3–4 mm fruits. C and D are images taken on an epifluorescence microscope (Axioplan) using a Chroma GFP filter set 41017 (Chroma, Bellows Falls, VT). E is a dark-field image of the same ovule in D. These images show expression is present in developing fruit. Scale bar in B represents 20 μm, scale bar in E represents 20 μm in C-E. (TIF 4435 kb

    Polyploidy on Islands: Its Emergence and Importance for Diversification.

    No full text
    Published source must be acknowledged with citation Copyright must be acknowledged First publication by Frontiers Media must be acknowledgedWhole genome duplication or polyploidy is widespread among floras globally, but traditionally has been thought to have played a minor role in the evolution of island biodiversity, based on the low proportion of polyploid taxa present. We investigate five island systems (Juan Fernández, Galápagos, Canary Islands, Hawaiian Islands, and New Zealand) to test whether polyploidy (i) enhances or hinders diversification on islands and (ii) is an intrinsic feature of a lineage or an attribute that emerges in island environments. These island systems are diverse in their origins, geographic and latitudinal distributions, levels of plant species endemism (37% in the Galapagos to 88% in the Hawaiian Islands), and ploidy levels, and taken together are representative of islands more generally. We compiled data for vascular plants and summarized information for each genus on each island system, including the total number of species (native and endemic), generic endemicity, chromosome numbers, genome size, and ploidy levels. Dated phylogenies were used to infer lineage age, number of colonization events, and change in ploidy level relative to the non-island sister lineage. Using phylogenetic path analysis, we then tested how the diversification of endemic lineages varied with the direct and indirect effects of polyploidy (presence of polyploidy, time on island, polyploidization near colonization, colonizer pool size) and other lineage traits not associated with polyploidy (time on island, colonizer pool size, repeat colonization). Diploid and tetraploid were the most common ploidy levels across all islands, with the highest ploidy levels (>8x) recorded for the Canary Islands (12x) and New Zealand (20x). Overall, we found that endemic diversification of our focal island floras was shaped by polyploidy in many cases and certainly others still to be detected considering the lack of data in many lineages. Polyploid speciation on the islands was enhanced by a larger source of potential congeneric colonists and a change in ploidy level compared to overseas sister taxa.Published onlin

    Collaborative project to identify direct and distant pedigree relationships in apple

    No full text
    Pedigree information is fundamentally important in breeding programs, enabling breeders to know the source of valuable attributes and underlying alleles and to enlarge genetic diversity in a directed way. Many apple cultivars are related to each other through both recent and distant common ancestors. As apple trees are clonally propagated, long-lived, and widely adapted, many of the ancestors of modern cultivars are still present in global germplasm collections. Use of apple SNP arrays enables identification of direct and distant pedigree relationships with precision. An example is the elucidation of the 'Honeycrisp' pedigree using the 8K SNP array, which enabled further findings regarding the inheritance of important alleles for traits including scab resistance and soft scald susceptibility.To facilitate more discoveries across apple germplasm, a large-scale collaborative apple pedigree reconstruction project has been initiated. This project utilizes output from the Illumina Infinium 20K and Affymetrix Axiom 480K apple SNP arrays, a high quality genetic linkage map for the 20K array SNPs, and a data curation pipeline developed through the FruitBreedomics and RosBREED projects. Techniques using shared haplotype length statistics will be used alongside historical information to deduce distant pedigree relationships. The project involves various experts, germplasm collections, and academic institutions around the world and is open for further extension. It will provide findings useful for breeding programs, germplasm collections, geneticists, and historians.</p
    corecore