55,508 research outputs found

    Ground pattern analysis in the Great Plains

    Get PDF
    There are no author-identified significant results in this report

    Evidence from scanning tunneling microscopy in support of a structural model for the InSb(001)-c(8×2) surface

    Get PDF
    In this letter we present evidence from scanning tunneling microscopy studies in support of a recently proposed structural model for the indium-terminated c(8×2) surface of InSb(001). This structural model, by Norris and co-workers, is based on a surface x-ray diffraction study [Surf. Sci. 409, 27 (1998)], and represents a significant departure from previously suggested models for the c(8×2) reconstruction on any (001) surface of the common III–V semiconductor materials. Although filled state images of the InSb(001)-c(8×2) surface have previously been published, empty states image of sufficient quality to extract any meaningful information have not previously been reported. The observations are in excellent agreement with the recently proposed model for this surface reconstruction

    Manifolds associated with (Z2)n(Z_2)^n-colored regular graphs

    Full text link
    In this article we describe a canonical way to expand a certain kind of (Z2)n+1(\mathbb Z_2)^{n+1}-colored regular graphs into closed nn-manifolds by adding cells determined by the edge-colorings inductively. We show that every closed combinatorial nn-manifold can be obtained in this way. When n3n\leq 3, we give simple equivalent conditions for a colored graph to admit an expansion. In addition, we show that if a (Z2)n+1(\mathbb Z_2)^{n+1}-colored regular graph admits an nn-skeletal expansion, then it is realizable as the moment graph of an (n+1)(n+1)-dimensional closed (Z2)n+1(\mathbb Z_2)^{n+1}-manifold.Comment: 20 pages with 9 figures, in AMS-LaTex, v4 added a new section on reconstructing a space with a (Z2)n(Z_2)^n-action for which its moment graph is a given colored grap

    Momentum distribution of confined bosons: temperature dependence

    Full text link
    The momentum distribution function of a parabolically confined gas of bosons with harmonic interparticle interactions is derived. In the Bose-Einstein condensation region, this momentum distribution substantially deviates from a Maxwell-Boltzmann distribution. It is argued that the determination of the temperature of the boson gas from the Bose-Einstein momentum distribution function is more appropriate than the currently used fitting to the high momentum tail of the Maxwell-Boltzmann distribution.Comment: 5 REVTEX pages + 2 postscript figures. Accepted in Phys. Rev.

    The Dual Formulation of Cosmic Strings and Vortices

    Full text link
    We study four dimensional systems of global, axionic and local strings. By using the path integral formalism, we derive the dual formulation of these systems, where Goldstone bosons, axions and missive vector bosons are described by antisymmetric tensor fields, and strings appear as a source for these tensor fields. We show also how magnetic monopoles attached to local strings are described in the dual formulation. We conclude with some remarks.Comment: 18 pages, CU-TP-588 and CERN-TH.6780/9

    Vortex Waves in a Cloud of Bose Einstein - Condensed, Trapped Alkali - Metal Atoms

    Full text link
    We consider the vortex state solution for a rotating cloud of trapped, Bose Einstein - condensed alkali atoms and study finite temperature effects. We find that thermally excited vortex waves can distort the vortex state significantly, even at the very low temperatures relevant to the experiments.Comment: to appear in Phys. Rev.

    Maximal violation of Bell inequalities by position measurements

    Get PDF
    We show that it is possible to find maximal violations of the CHSH-Bell inequality using only position measurements on a pair of entangled non-relativistic free particles. The device settings required in the CHSH inequality are done by choosing one of two times at which position is measured. For different assignments of the "+" outcome to positions, namely to an interval, to a half line, or to a periodic set, we determine violations of the inequalities, and states where they are attained. These results have consequences for the hidden variable theories of Bohm and Nelson, in which the two-time correlations between distant particle trajectories have a joint distribution, and hence cannot violate any Bell inequality.Comment: 13 pages, 4 figure

    A duality relation for fluid spacetime

    Get PDF
    We consider the electromagnetic resolution of gravitational field. We show that under the duality transformation, in which active and passive electric parts of the Riemann curvature are interchanged, a fluid spacetime in comoving coordinates remains invariant in its character with density and pressure transforming, while energy flux and anisotropic pressure remaining unaltered. Further if fluid admits a barotropic equation of state, p=(γ1)ρp = (\gamma - 1) \rho where 1γ21 \leq \gamma \leq 2, which will transform to p=(2γ3γ21)ρp = (\frac{2 \gamma}{3 \gamma - 2} - 1) \rho. Clearly the stiff fluid and dust are dual to each-other while ρ+3p=0\rho + 3 p =0, will go to flat spacetime. However the n (ρ3p=0)(\rho - 3 p = 0) and the deSitter (ρ+p=0(\rho + p = 0) universes ar e self-dual.Comment: 5 pages, LaTeX version, Accepted in Classical Quantum Gravity as a Lette

    Evaporation of a packet of quantized vorticity

    Full text link
    A recent experiment has confirmed the existence of quantized turbulence in superfluid He3-B and suggested that turbulence is inhomogenous and spreads away from the region around the vibrating wire where it is created. To interpret the experiment we study numerically the diffusion of a packet of quantized vortex lines which is initially confined inside a small region of space. We find that reconnections fragment the packet into a gas of small vortex loops which fly away. We determine the time scale of the process and find that it is in order of magnitude agreement with the experiment.Comment: figure 1a,b,c and d, figure2, figure
    corecore