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We show that it is possible to find maximal violations of the Clauser-Horne-
Shimony-Holt �CHSH� Bell inequality using only position measurements on a pair
of entangled nonrelativistic free particles. The device settings required in the CHSH
inequality are done by choosing one of two times at which position is measured.
For different assignments of the “+” outcome to positions, namely, to an interval, to
a half-line, or to a periodic set, we determine violations of the inequalities and
states where they are attained. These results have consequences for the hidden
variable theories of Bohm and Nelson, in which the two-time correlations between
distant particle trajectories have a joint distribution, and hence cannot violate any
Bell inequality. © 2010 American Institute of Physics. �doi:10.1063/1.3447736�

I. INTRODUCTION

It is well known that the position operators of a particle at different times do not, in general,
commute. This is the reason why the notion of trajectories cannot be applied to quantum particles.
But noncommutativity is also a useful feature in some experiments. In particular, it is essential in
experiments aiming at violations of Bell inequalities. In this paper we show that the noncommu-
tativity of positions at different times is sufficient for getting a maximal violation of the CHSH-
Bell inequality and find the states required for this.

Our first motivation for investigating this was the possibility of using such Bell experiments as
a refutation of hidden variable theories which do assign a distribution of trajectories to every
quantum state: In such a theory the positions at all times have a joint distribution, and therefore
cannot violate a Bell inequality. Hence their predictions must be in conflict with quantum me-
chanics and, most likely, with experiment. After completion of our work we found that this line of
reasoning had already been followed by Correggi and Morchio.7 We nevertheless include our
discussion and emphasize some additional points. Technically, the Bell violations found in Ref. 7
are for particles in an external potential, whereas we look at two free particles.

Our second motivation for the present work is the endeavor of finding a loophole-free Bell test
based on homodyne detection in quantum optics. In such a Bell measurement, each detection must
be a function of just a single field quadrature, which is mathematically the same problem as using
functions of a single position variable. This is impossible with Gaussian states because the Wigner
function then provides a joint distribution. But with the new abundance of non-Gaussian states
recently realized in the laboratory,1,22 there is a chance to find a feasible setup. Here the knowledge
of the maximally violating states may be helpful, although only as a rough indication where to
look. It would be even better to be able to start from a given state and to identify the quadrature
measurements giving the best violation.

Our paper and our results are organized as follows. In Sec. II we briefly describe how our
result contributes to the debate about hidden variable theories. In Sec. III we provide some general
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background concerning violations of the CHSH inequality. Here we introduce techniques related
to the universal C�-algebra generated by two projections. These techniques are well known in the
operator algebra literature, but as far as we know they have not been applied to simplify the theory
of Bell inequality violations. In Sec. IV we outline how to get maximal CHSH violations from
position measurements. There are three different settings: �1� We choose the “+”-event of each
measurement as a position outcome in some finite interval. When for both Alice and Bob, d1 ,d2

are the interval lengths used for the first and second setting, m is the particle mass, and t the time
separation, then the attainable violation depends only on the dimensionless parameter u
=md1d2 / �4t��. We show that maximal violation is attained for infinitely many values of u. �2�
When the “+”-event means that the particle is on the positive half-line, maximal violation can be
almost achieved, up to an arbitrarily small error. Hence there are singular states �i.e., states not
given by a density operator� for which maximal violation is attained. These are necessarily dilation
invariant, up to a quadratic phase. Finally, �3� we look at periodic sets. It is well known5 that
periodic functions of position and momentum commute, if the product of the periods is
2�� / integer. Translated to the setting of a free particle with time difference t between position
measurements with periods p1 and p2, we find the two measurements to commute whenever u−1

�Z, where u=mp1p2 / �2�t��. Of course, in that case no violation of a Bell inequality is possible.
However, we show that this situation is very unstable, i.e., that the maximal violation jumps from
zero to a finite value for u arbitrarily close to an integer. In Appendix we have collected some
technicalities regarding case �2�.

II. THE BOHM–NELSON THEORY

When it first appeared, Bohm’s hidden variable extension of quantum mechanics3 met much
opposition from the mainstream physical community because it appeared to violate some basic
tenets of quantum theory. Heisenberg, in his paper introducing the uncertainty relations, had
convinced the physics community that the notion of trajectories of individual particles had no
place in the theory. There was even a theorem by von Neumann showing hidden variables to be
impossible. To its proponents, Bohm was seen to restore realism to physics, giving a complete
moment-to-moment account of where all the particles of a complicated quantum system really
were. In part, these were also the motivations of Nelson for creating his “stochastic mechanics.”14

In addition, he endeavored to give a derivation of the theory, which was at the same time a
derivation of quantum mechanics itself. Both theories are embedded in a family of such theories
parametrized by the diffusion constant in units of �,9 with Bohm’s theory corresponding to 0 and
Nelson’s to 1. In the limiting case of infinite diffusion constant, we find a theory in which
positions at different times are just taken to be independent. �There are further generalizations. In
fact, it is easy to build Markov processes following the quantum evolution of any observable,23 so
one could directly discuss everything in terms of spin variables rather than positions. However,
this generalization is clearly against the taste of Bohmians, and we will ignore it as they have.� For
the conceptual problems we discuss here, the only salient feature of all these theories is that they
provide a joint distribution for all particle positions at all times, such that the equal time prob-
abilities for particle configurations exactly reproduce the quantum mechanical probability distri-
bution ���2. This is the basis for the claim that Bohm’s theory is empirically equivalent to quantum
theory. At the very least, this agreement reassures us that some aspect of these “real” trajectories
is correct.

On exactly the same footing, let us look at another quantity, which makes sense quantum and
hidden variable theories alike, namely, the two-time correlations between distant noninteracting,
but possibly entangled, subsystems. Of course, in the quantum case the positions of the same
particle at different times do not commute, so quantum mechanics has no joint probability for
these. But for correlations between different particles there is no such constraint, and we can
directly compare the quantum predictions with the two-time correlation functions from the Bohm–
Nelson theory. As we show below, the quantum and the Bohm–Nelson predictions turn out to be
quite different �they also disagree between the Bohmian and the Nelsonian variants�. So if we take
the agreement of one-time correlations with quantum theory as evidence that there is something
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right about these trajectories, we are now forced to admit that there is also something wrong with
them. Certainly, this disagreement completely invalidates the argument of “empirical equivalence”
between Nelson–Bohm theory and quantum mechanics. We could even stage an experimentum
crucis on the basis of the explicit states and observables computed below. There is little doubt how
these would turn out, probably not even for the staunch defenders of these theories. So our
argument in some sense refutes the Bohm–Nelson theory.

Of course, we are aware that the Bohmians and Nelsonians know about this disagreement, and
will not be impressed. �A notable exception is the founder of stochastic mechanics, who aban-
doned the theory, when he realized some of its unphysical nonlocal features.15�

The simplest position is to include the collapse of the wave function into the theory.2,16 Then
the first measurement instantaneously collapses the wave function. So if agreement with quantum
mechanics is to be kept, the probability distribution changes suddenly. There is no way to fit this
with continuous trajectories: When the guiding field collapses, the particles must jump. While the
glaring nonlocality of this process may be seen as just another instance of implicate order, it
introduces an element of unexplained randomness and demotes the Bohm equation �or Nelson’s
Fokker–Planck equation� from its role as the fundamental dynamical equation for position.

This may be the reasons why many Bohmians adopt a strongly contextual view. In this view
one has to describe the measurement devices explicitly in the same theory, so all trajectories
depend on the entire experimental arrangement. Therefore, the trajectory probabilities in two
experiments, in which the measurements on particle A happen at different times, have no relation
to each other, not even for trajectories of particle B. So the two-time correlations computed from
the two-particle ensemble of trajectories are never observed anyhow, and hence pose no threat to
the theory. The downside of this argument is that it also applies to single time measurements, i.e.,
the agreement between Bohm–Nelson configurational probabilities and quantum ones is equally
irrelevant. The naive version of Bohmian theory holds “position” to be special, even “real,” while
all other measurement outcomes can only be described indirectly by including the measurement
devices. Saving the Nelson–Bohm theory’s failure regarding two-time two-particle correlations by
going contextual also for position just means that the particle positions are declared unobservable
according to the theory itself, hence truly hidden.

In this consistently contextual version of the theory, there may still be those “real” trajectories,
but they are only for the eyes of Bohm’s Demon, or some such hypothetical creature. No physical
interaction, not even an “ideal position measurement,” will reveal them to the mere human. This
certainly explains the apparent paradox that Bohmians on the one hand place so much value on
being able to say where the particles really are, but are, on the other hand, so remarkably unin-
terested in actually computing trajectories. But when the interest in the real trajectories is gone, the
only gain from the whole theory seems to be a pro forma justification for saying that the hand of
a voltmeter is really somewhere. The mountain in labor gave birth to a mouse.

III. GENERAL STRUCTURE OF CHSH VIOLATIONS

In this section we look at the general problem of finding the maximal quantum violations of
the Bell-CHSH inequality, when the measurements of Alice and Bob are given. All this is well
known, but since we need it several times, it may be useful to state the criteria in a compact form.

Each of the measurements in the CHSH setting is a positive operator valued measure �POVM�
with outcomes +1, �1, which means that it is characterized by two positive operators F� with
F++F−=1. We can parametrize such observables by the single operator A=F+−F−, which gives
the expectation of the outcome and satisfies −1�A�1. Then F�= �1�A� /2. We will assume the
measurement to be projection valued �i.e., F�

2 =F��, which is equivalent to A=A� and A2=1. In the
CHSH setting Alice chooses two such measurements, A1 ,A2, and Bob chooses B1 ,B2. Since their
respective laboratories are widely separated, they can make their choices independently, and we
may take A and B as acting on the respective tensor factors of the Hilbert space HA � HB associ-
ated with the combined system. There is a quantum state � of this system, in which correlations
Tr �AiBj can be determined. The CHSH correlation is the linear combination of four such terms,
which is the expectation of the operator
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T = A1 � �B1 + B2� + A2 � �B1 − B2� . �1�

Given the operators Ai ,Bj, the suprema of the CHSH correlations Tr �T attainable with quantum
states � are given by the largest elements in the spectrum of T, and since we can invert the
outcomes of Alice’s measurements �Ai�−Ai�, we are equally interested in the most negative
expectations. To summarize, we are looking for the operator norm �T�. For arbitrary operators X
we have �X�2= �X�X�, and since T=T� we have �T�=��T2�. A simple algebraic computation using
the properties of the operators Ai , Bj stated above gives

T2 = 4�1 + A3 � B3� , �2�

where we have denoted, e.g., A3ª �2i�−1�A1 ,A2�. Since A1
2=1, A1 is unitary, and we have

A1A3A1=−A3. Hence, the spectrum of A3 is symmetrical around zero, with maximum equal to
�A3�. This gives a compact expression for the maximal attainable CHSH correlation, namely,

�T� = �4�1 + �A3��B3�� . �3�

In particular, when either Alice’s or Bob’s measurements commute, so the norm of the correspond-
ing commutator vanishes, we get �T�=2, i.e., the CHSH inequality is satisfied. On the other hand,
since ��A1 ,A2���2�A1��A2�=2, we have �T���8=2�2, which is known as Tsirelson’s inequality.
For our purposes, the main gain from �3� is that the determination of the maximal violation is
reduced to the estimates of commutators, which can be done separately for Alice and Bob.

A. The algebra generated by two projections

Note that both on Alice’s side �and similarly on Bob’s� only two projections Pi= �1+Ai� /2 are
relevant. Let A�P1 , P2� denote the algebra generated by the two projections P1 and P2 together
with the identity 1. It turns out4,10,12,18 that this can be understood completely in terms of
2	2-matrices. Indeed, we observe that

C = 1 − P1 − P2 + P1P2 + P2P1 �4�

satisfies

CP1 = P1P2P1 = P1C , �5�

and a similar relation for P2. Therefore, C commutes with the generating projections of the
algebra, and hence with all of A�P1 , P2�. The central element C satisfies 0�C�1 because C=1
− �P1− P2�2 and

− 1 � − P2 � �P1 − P2� � P1 � 1 ,

so 0� �P1− P2�2�1. Clearly, C=0 means that P1 and P2 are orthogonal, whereas C=1 means that
P1 and P2 are equal. At these extremes, �P1 , P2�=0. More generally, the commutator satisfies

�P1,P2���P1,P2� = − �P1,P2�2 = C�1 − C� . �6�

Hence the largest norm for the commutator square is 1
4 , attained at C= 1

21, where indeed the
operators Ai=2Pi−1 appearing in the CHSH inequality also attain their maximal commutator
norm,

�A3� = 1
2 ��A1,A2�� = 2��P1,P2�� = 2��C�1 − C�� = 1. �7�

Now we can express every element of A�P1 , P2� as a linear combination of the four terms
1 , P1 , P2 , P1P2, multiplied by suitable polynomials in C. It is convenient to choose another basis,
in which multiplication becomes ordinary matrix multiplication, and such an isomorphism can be
implemented at the Hilbert space level �see, e.g., Refs. 10 and 12�: First we split off the null space
of all commutators, i.e., H0= 	
 �C�1−C�
=0
=ker A3. On this space, which is clearly an invari-
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ant subspace of the two projections, all four eigenvalue combinations of two commuting projec-
tions are possible. Going to the orthogonal complement H0

�, we put Kª 	
�H0
� � P1
=



= P1H0
� and let H denote the restriction of the central element C to this invariant subspace, i.e.,

H=C �K= P1P2P1 �K. Then we define

V:H0
� → K � C2 �8�

by

V
 = iP1
 � �+ �1 +
1

�H�1K − H�
P1P2�1 − P1�
 � �− �1, �9�

where �� �1= �1 /�2�� 1
�1

�. One can readily check that this map is unitary. Operators on K � C2 can
be considered as B�K�-valued 2	2-matrices; this gives

A1�H0
� � I � �1,

A2�H0
� � ��H� � �1 + �H� � �2,

A3�H0
� � �H� � �3, �10�

where � , : �0,1�→R are given by ��h�=2h−1, �h�=2�h�1−h�. The point of this decomposi-
tion is, of course, that in the matrix entries we only have functions of the central element C or
rather its compression H.

B. Attained maximal violations

We now use detailed form �10� of the operators to get better information about the states
where large violation is attained. Both algebras now have a central element, CA and CB, respec-
tively, giving the compressions HA and HB. When these are fixed h-numbers, the four operators
Ai ,Bj are completely fixed 2	2-matrices, and we can explicitly find a state on C2 � C2 maximiz-
ing the violation. In general, we can do this maximization at every pair of values, which by �3�
gives the function

�hA,hB� = 2�1 + 4�hA�1 − hA��hB�1 − hB� �11�

plotted in Fig. 1. Given the joint probability distribution of HA and HB, the largest attainable
CHSH correlation will be the expectation of �11� with respect to this distribution. Obviously, for
large correlation we want to choose a joint distribution which is concentrated as near the point
hA=hB= 1

2 as possible.
This leads to the following three cases.

2
2.2
2.4
2.6
2.8

0
0.5 1 0

0.5
1

FIG. 1. �Color online� Maximal CHSH correlation as a function of the central parameters of Alice and Bob.
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�1� When 1
2 is an eigenvalue of both HA and HB, we will chose a maximizing vector from these

eigenspaces. Then the CHSH correlation will be exactly 2�2.
�2� When 1

2 lies in both spectra, but for one of these operators is not an eigenvalue �i.e., lies in
the continuous spectrum�, the CHSH correlation for any state represented by a density
operator in the given Hilbert space will be strictly less than 2�2, but can be chosen arbitrarily
close to this value.

�3� Finally, if 1
2 is not in the spectrum of HA or HB, the CHSH correlation is less than 2�2−� for

some ��0 and all states.

To characterize the structure of the maximally violating states, we would now like to extract
from the case �1� as much information as possible about further expectation values, including
those not directly measured in a Bell experiment. Similarly, in case �2� we are interested in the
limits of expectation values Tr��nA� for �n a sequence of density operators with asymptotically
maximal violation. It is convenient to treat these two cases on the same footing by choosing a
convergent subsequence of the �n in the weak�-topology, and thereby find an exactly maximally
violating limiting state. This is possible if we extend the notion of “states” from density operators
to arbitrary expectation value functionals � :B�HA � HB�→C. Of these we only require linearity,
positivity, and normalization, so they are states in the sense of C�-algebra theory. The state space
of a C�-algebra is compact with respect to “convergence of all expectation values,” so convergent
subsequences in this wider setting always exist. Of course, in case �2� a sequence �n can converge
only to a singular state and not a “normal” one, given by a density operator. The singular state is
never unique because fixing such a state is the noncommutative analog of explicitly defining a free
ultrafilter. However, as will be seen below, all these states may well agree on some observables of
interest.

Geometrically, the CHSH expression with fixed Ai ,Bj is an affine functional on the state space
of B�HA � HB�. It reaches its maximum at an extreme point, so it is not surprising that this entails
some special relations. The typical tool here is the Cauchy–Schwarz inequality in the form
���X�Y��2���X�X���Y�Y�. Hence if we know that the expectation of a positive operator such as
X�X vanishes, we can conclude that ��X�Y�=��Y�X�=0 for all Y. This approach has been
applied21 to the CHSH inequality by writing 2�2−T as the sum of several operators of the form
X�X. Here we can achieve similar results by looking at explicit form �10� of the operators Ai ,Bj

after transformation �9�.
Under this transformation Alice’s Hilbert space becomes H0

A
� �KA � C2�, so that HA is an

operator on KA, and the given operators A1 ,A2 take form �10�. Of course, an analogous decom-
position holds for Bob. The projections onto these subspaces as well as the spectral families of the
operators HA ,HB commute with all Ai ,Bj. Suppose we take a joint spectral projection P� of the
commuting operators HA ,HB corresponding to a set of distance � to the point � 1

2 , 1
2

�. Then TP� is
strictly smaller than 2�2, so a maximizing state must have ��P��=0. Hence a maximally violating
state must vanish on H0

A
� HB and HA � H0

B, and its restriction to B�KA � KB� must be a state
�1/2,1/2 giving the sharp values of 1

2 to both HA and HB, in the sense that

�1/2,1/2��HA − 1
21�2� = �1/2,1/2��HB − 1

21�2� = 0. �12�

At such a point we can set ��h�=0 and �h�=1 in formula �10�, and its analog for B1 ,B2, and just
consider the maximization of the CHSH expression with fixed qubit operators Ai=Bi=�i. Since
the maximum of T for these operators is attained at the unique pure state,

�0 =
1
�2

�e−i�/4�+ + � + �− − �� � C2
� C2 = C4 �13�

�where �� � are the eigenvectors of �3�, we conclude that the overall state must be of the form

� = �1/2,1/2 � ��0��0� . �14�

It is clear that, conversely, any state of this description will be maximally violating.
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In case �1�, the explicit form for the maximally violating pure states in the original represen-
tation is now

� =
1
�2

�e−i�/4eA,+
� eB,+ + eA,−

� eB,−� , �15�

Where, e.g.

eA,�
ª VA

��fA � � � �� = �− iP1
A � �1 − P1

A����2P2
Af� , �16�

and fA is a normalized eigenvector of HA belonging to the eigenvalue of 1
2 . In case �2�, we choose

a sequence �fn
A� of unit vectors such that �HAfn

A− 1
2 fn

A�→0 �usually called approximate eigenvec-
tors�. Defining �n using fn

A and fn
B as in �15�, we get the asymptotic maximal violation

limn→��n �T�n�=2�2; the states ��n��n� approximate some singular state of form �14�. This
systematic construction of �approximate� maximally violating wave functions will be used in Sec.
IV.

An interesting corollary of the above structure is the cryptographic security of maximal
CHSH correlations. We are then interested in the possible correlations between the observed data
and the measurements made by an eavesdropper “Eve” in a separate laboratory. The measurement
of Eve is then described by an operator E commuting with all the operators A1 ,A2 ,B1 ,B2 used by
Alice and Bob. Hence E lives on the tensor factor KA � KB, and from form �14� of the state, it is
clear that Eve’s results are independent of Alice’s and Bob’s. This is summarized in the following
proposition.

Proposition 1: Let � be a state maximally violating the CHSH inequality on operators
A1 ,A2 ,B1 ,B2. Let p be a noncommutative polynomial in four variables and set P
= p�A1 ,A2 ,B1 ,B2� and P0= p�A1

0 ,A2
0 ,B1

0 ,B2
0�, where Ai

0=�i � 1 and Bi
0=1 � �i. Then for any opera-

tor E commuting with all Ai ,Bj,

��EP� = ��E��0�P0�0� . �17�

IV. POSITION MEASUREMENTS AT DIFFERENT TIMES

We now proceed to the case of position measurements. The Heisenberg picture position
operator of a massive, freely evolving nonrelativistic particle with mass m is given by

Qt = Pt/m + Q, t � R , �18�

where Q and P are the standard position and momentum operators, acting in the Hilbert space
L2�R� �in particular, P=−i��d /dx��. Concerning measurements of Qt �position at time t�, we are
only interested in recording whether the outcome lies in a fixed interval ��R, in which case we
assign the value of “+1” to it; otherwise we label it “�1.” The corresponding two-valued observ-
able is 2���Qt�−1.

We consider the case where Alice makes measurements with one particle and Bob with
another one; let A1ª2��1

�QA�−1 and A2ª2��2
�Qt

A�−1 be the position measurements for Alice’s
particle at time zero and time t�0, with intervals �1 and �2, respectively, and let Bi be the similar
ones for Bob. For simplicity, we suppose that both use the same measurement intervals, same time
t, and particles of same mass m. Now we are in a situation discussed in Sec. III.

Since the operators are identical for both parties, we consider only Alice’s part and drop the
associated index when there is no confusion. The two projections are now P1=��1

�Q� and P2

=��2
�Qt�. We begin with the fact that the pair �Q , t−1mQt� is canonically conjugated, and therefore

unitarily equivalent to the pair �Q ,P�, the unitary operator in question being simply ei�2t�−1mQ2/�.
With this equivalence, P1���1

�Q�, P2��t−1m�2
�P�; in the following, we will simply replace the

Pi with these operators.
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The idea is to consider the possibility of maximal violation of the CHSH inequality for three
types of concrete choices for the localization intervals �i, exhibiting different commutativity
behaviors of the position and momentum projections P1 and P2.5

�1� For compact intervals, P1 and P2 are partially commutative, i.e., ker�P1 , P2�=ker A3 is nei-
ther 	0
 nor H. Indeed, there are common 0-eigenvectors of P1 and P2.

�2� For half-lines, the projections are totally noncommutative, i.e., ker�P1 , P2�= 	0
 and K
=L2��1�.

�3� For periodic sets, the periods can be chosen so that P1 and P2 are commutative, i.e.,
ker�P1 , P2�=H. Then K= 	0
.

�The full characterization of commuting functions of Q and P is given in Ref. 6; for a
generalization to Abelian groups, see Ref. 24.� The projections apparently depend on various
parameters �1 ,�2 , t ,m; however, as the dilations are represented by unitary operators, the only
relevant parameter is the scale of the Q-interval relative to the P-interval. In case �2� there is no
specific scale because the projections are invariant under dilations; hence the structure of the Bell
inequality violations does not depend at all on the parameters. In cases �1� and �3�, Q- and P-sets
are characterized by lengths l1 and mt−1l2, respectively, where the li are proportional to the lengths
�case �1�� or periods �case �2�� of the sets �i. If we fix the unit of position as l1 �thereby making
the position variable dimensionless�, the unit of momentum will be �l1

−1; in these units, the above
characteristic lengths are 1 and

u =
ml1l2

t�
, �19�

respectively. We can equally well fix the unit of momentum as mt−1l2, in which case the unit of
position is t� / �ml2�; the characteristic lengths are then u and 1, respectively. Hence the only
relevant parameter is the dimensionless scale u. For technical reasons, we will use the first choice
of units in case �1� and the second in �2�. For both choices of units, the associated operators are
dimensionless; we will denote these by Q and P.

A. Compact intervals: Partially commutative case

Here we let �i�� be a compact interval for i=1,2. As already mentioned, ker A3 is non-
trivial; however, P1�H�=L2��1��H0

� �see, e.g., Ref. 5�, so the relevant subspace K is just L2��1�.
It is convenient to choose the length scales as liªdi /2, with di the length of �i; passing to the
units where l1 is 1 as discussed above, we see that the relevant operator H is unitarily equivalent
to

Hu ª ��−1,1��Q���−u,u��P���−1,1��Q� � B�L2��− 1,1��� ,

where u is given by �19�, i.e., u=md1d2 / �4t��. �This equivalence can be seen easily by first
applying the usual translation and “velocity boost” unitaries with appropriate shifts to center the
intervals to the origin, and then dilating by d1 /2.�

The structure of Hu has been extensively studied because of its relevance in band and time
limiting of signals �see, for instance, Ref. 8, pp. 21–23 and Ref. 11, pp. 121–132 �Ref. 20� or the
original papers by Landau et al.13,17,20�. We summarize the relevant mathematical facts briefly in
the following paragraph.

The operator Hu is explicitly given by

�Hu���v� = �
−1

1 sin�u�v − w��
��v − w�

��w�dw, � � L2��− 1,1�� ,

from which it follows that Hu commutes with the differential operator �d /dv���1−v2��d /dv��
−u2v2 that determines the angular part of the wave equation in prolate spheroidal coordinates. This
differential operator has a complete orthonormal set of eigenfunctions �n

u�L2��−1,1��, n
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=0,1 , . . ., called angular prolate spheroidal wave functions. In the notation of Ref. 19 we have
�n

u�v�=�n+ 1
2Psn�v ,u�. The corresponding eigenvalues �n�u� of Hu are

�n�u� = 2u�−1Sn
�1��1,u�2 � �0,1�, n = 0,1,2, . . . , �20�

where Sn
�1��· ,u� is the radial prolate spheroidal wave function of the first kind. In particular, �n�u�

depends continuously on u. In addition, we have 1��n�u���n+1�u��0 for all n and u.
Now 1

2 ���H� exactly when u is chosen so as to make �n�u�= 1
2 for some n. Since

limu→� �n�u�=1 and limu→� �n�u�=0 for fixed n �see Ref. 20�, it follows by continuity that for
each n we get at least one value un� �0,1� with �n�un�= 1

2 . On the other hand, Hu�Hu� if u
�u�, so each �n�u� is an increasing function of u, and un is thus uniquely determined. Since for
given n, we have �n�u���n+1�u� for all u it follows by continuity that un�un+1, i.e., the sequence
�un� is increasing.

Figures 2 and 3 show the u-dependence of the largest eigenvalues, as well as the relevant
commutator norm �A3�, obtained from the above representation. The critical values un can be
computed numerically; the smallest two are approximately u0�0.849 and u1�2.381.

Summarizing, a state that maximizes the violation of CHSH inequality for position measure-
ments exists if and only if both Alice and Bob adjust their parameters in such a way that �19� holds
with u one of the critical values, say un for both Alice and Bob. Using �15�, the corresponding
wave function ��L2�R2 ,dqA ,dqB� can then be expressed quite explicitly. �In order to simplify
the form of the maximally violating wave function, we have assumed in the beginning that Alice

Λ0�u�

Λ1�u�
Λ2�u�

Λ3�u�
Λ4�u�

u0 u1 u2 u3
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FIG. 2. �Color online� The eigenvalues �n�u� of H as functions of the parameter u= 1
4 �t��−1md1d2.
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FIG. 3. �Color online� The norm of the operator A3 as a function of u.
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and Bob use the same parameter values. Clearly, they could just as well use different values, in
which case Alice must have uA=un for some n, and Bob can have uB=un� for some other number
n�.� For this we need the functions e� of �16�; but now �2P2�n

un =�1
2

�n+ 1
2

�Psn�· ,un��L2�R�, so
e��q� is simply this spherical function, multiplied with −i if q��1, and with �1 otherwise. In
particular, the wave function � is discontinuous at the lines qA= �1 and qB= �1. In the case
where the intervals are centered at the origin, i.e., �i= �−di /2,di /2�, we get

��qA,qB� = C0�qA,qB�
1

d1
�n +

1

2
�Psn�2qA/d1,un�Psn�2qB/d1,un�ei��qA,qB�, �21�

where

C0�qA,qB� =��1 + 1/�2, qA,qB � �1, or qA,qB � �1

�1 − 1/�2, otherwise,
� �22�

is real, and the phase ��qA ,qB� is given by

��qA,qB� = − 2un�qA
2 + qB

2�/�d1d2� + �
0
+ + � , qA,qB � �1


0
+, qA,qB � �1


0
− + �/2, otherwise.

�

0

� = � arctan���2 � 1�−1� . �23�

Figure 4 shows the picture of the simplest choice for the wave function.

FIG. 4. �Color online� The maximally violating wave function �21� with n=0 �u=u0�0.849�, �1=�2= �−1,1�. The plotted
function is ��qA ,qB� without the complex phase factor ei��qA,qB�; the phase ��qA ,qB� is shown in shading, as the value
varies from 0 to 2�. Note the discontinuity lines qA= �1, qB= �1 of the factor C0�qA ,qB� �see Eq. �22��, marking the
measurement interval.
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B. Half-lines: Totally noncommutative case

Here we set �i= �xi ,��, i=1,2, xi�R; then ker A3= 	0
, and we have the tensor product
representation for the full operators. As before, K=L2��1�. We first apply the unitary shifts that
transform the situation to the dilation invariant case �i= �0,��, i=1,2; then the units of position
and momentum play no role, and A1�Sign�Q� and A2�Sign�P�. In particular, the spectrum of H
does not depend on any of the parameters.

The transformation V :L2�R�→L2��0,��� � C2 given by �9� has now a particularly simple
form, namely,

V
 = i���0,���Q�
 � �+ �1 + ���−�,0��Q�
 � �− �1� , �24�

where � :L2��−� ,0��→L2��0,��� is the parity operator. However, we still have to determine the
spectrum of the operator H=��0,���Q���0,���P���0,���Q�, acting on K=L2��0,���. Here it is con-
venient to utilize the dilation invariance of the projections; we seek a unitary operator W that
diagonalizes the dilation generator DªQP+PQ by way of

WDW� = Q � IC2. �25�

Such a unitary is obtained by first separating the positive and negative half-axes by using the V
above, then expanding L2��0,��� into the full L2�R� via the unitary operator U+ :L2��0,���
→L2�R�, where

�U+����� = �2e���e2�� , �26�

and then applying the Fourier–Plancherel operator F. Indeed, the operator �U+ � IC2�V transforms
D into P � 1C2, so we get �25� by setting Wª−i�FU+ � IC2�V :L2�R�→L2�R� � C2 �where the
factor −i is chosen for convenience.� This unitary operator approximately diagonalizes P1 and P2

simultaneously, meaning that we get the explicit form for the functions of H appearing in �10� �see
Appendix�. We can then explicitly compute H= P1P2P1: this gives

H � 1
2�1 + tanh� 1

2�Q�� , �27�

acting on the space L2�R�=U+L2��0,���.
It follows from �27� that the spectrum of H is purely absolutely continuous and contains the

point 1
2 . Hence, maximally violating states � exist, are of the form �14�, and each of them is

singular. Note that the tensor product representation space is now L2�R2� � C4.
It is possible to further specify the properties of the restriction of � to the first tensor factor

L2�R2�. According to �27�, spectral projections of H associated with intervals around 1
2 correspond

bijectively to those of Q around 0. Hence, Eqs. �12� imply that �1/2,1/2�f�QA ,QB��= f�0,0� for any
bounded measurable function f :R2→C continuous at �0,0�. With this information, we can now go
back to the representation where T is given by �1� with A1=Sign�QA�, A2=Sign�PA�, and Bi

similarly; using �25�, as well as the Schwarz inequality, we see that any maximally violating state
� satisfies

��f�DA,DB�X� = ��Xf�DA,DB�� = f�0,0���X� , �28�

if f :R2→C is a bounded measurable function continuous at �0,0�, and X�B�L2�R2�� is arbitrary.
In particular, each maximally violating state is invariant under dilations in this representation.
Since Q and P transform covariant under dilations, this means that maximally violating states are
concentrated on �0,0� and infinity, in both position and momentum representations; the precise
statement is the following observation.

Proposition 2: Let ��B�L2�R2��� be a dilation invariant state, and let f :R2→C be a con-
tinuous function vanishing at the origin and infinity. Then

��f�QA,QB�� = ��f�PA,PB�� = 0.
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Proof: Set K�r1 ,r2�ªB�r2� \B�r1�, where B�r� is the open ball in R2 of radius r centered at the
origin. By dilation invariance, ���B�r��QA ,QB��=���B�1��QA ,QB�� for all r�0, so for r1�r2 we
get ���K�r1,r2��QA ,QB��=0. From the positivity of � it follows that ��f�QA ,QB��=0 for any
bounded measurable function f :R2→C supported in K�r1 ,r2�. Now if f :R2→C is continuous and
vanishes at both zero and infinity, then limn→���K�1/n,n�f − f��=0, and hence ��f�QA ,QB��=0 by
the norm continuity of �. The case with PA is similar. �

We now wish to find wave functions approximating the maximally violating singular states �.
Since any such state is dilation invariant, one can expect that the approximating wave functions in
L2�R2� would basically look like 1 /��xy�, but with some regularization at the coordinate axis and
infinity. �Here 1 /�x comes from formally solving the “eigenvalue equation” D�=0.�

In order to construct such approximating wave functions, we proceed as described in Sec.
IV C. The approximate eigenvectors of �27�, corresponding to the point 1

2 ���H�, are of the form
g�= �2��−1/2g�x / �2���, where g�L2�R� is an arbitrary unit vector, and ��0 is small. Hence, the
corresponding vectors for the original H=��0,���Q���0,���P���0,���Q�, acting on L2��0,���, are
f�ª iU+

�F�g�; explicitly, they are of the form

f��x� = i��

x
f�� ln x�, x � 0,

where f �L2�R� is an arbitrary unit vector. Hence, the wave functions we are seeking are given by
�15�, with e�

�=V��f� � �� �� �for both Alice and Bob�. These can now be obtained from �24�,

e�
+�x� =

1
�2

f���x��, e�
−�x� =

1
�2

Sign�x�f���x�� .

Hence,

���qA,qB� =
1

2�2
�e−i�/4 + Sign�qAqB��

�

��qAqB�
f�� ln�qA��f�� ln�qB�� . �29�

This same formula appears in Ref. 1; however, the paper does not seem to contain any systematic
derivation for the result.

The approximating wave function in the original representation, where both Ai are position
measurements, is then

�qA,qB� � ���qA,qB�e−i�1/2��−1mt−1�qA
2+qB

2 �,

where the measurement intervals are �0,�� for both time zero and t.
We close this subsection by demonstrating that the singular states that can be approximated by

the wave functions �29� actually depend on the regularizing function f , even though they are all
maximally violating and dilation invariant. One property of a dilation invariant state � that we can
easily determine is the expectation value �0

Q
ª��h�QA ,QB��, where h :R2→R is bounded, mea-

surable, and continuous at the origin, with h�0,0�=1. By dilation invariance, this does not depend
on h, and describes the “weight” of the state at the origin in the position spectrum. Note that by
Proposition 2, each dilation invariant state is concentrated at zero and infinity. However, the
distribution of weight between these points is not fixed: by direct calculation using �29�, we get

�0
Q = lim

�→0
�����−a,a�	�−a,a��QA,QB���� = lim

�→0
��

−�

� ln a

�f�x��2dx�2

= ��
−�

0

�f�x��2dx�2

, �30�

which may attain any value in �0,1�, depending on where f is concentrated.
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C. Periodic sets: Commutative case

Here we simply want to make a remark about the commutativity, without trying to analyze the
periodic set case systematically. Consider sets of the form

�i = piZ + �0,pi/2� ,

where pi�0 are the periods. Now we choose the length scales as l1ªp1 and l2ªp2 / �2��. Passing
to the units where mt−1l2 is 1 �see the beginning of this section� via the associated dilation, we get
A1�gu�Q�, A2�g2��P�, with

gv�q� = �1, q � v��0, 1
2� + Z�

− 1, otherwise
�

and u again given by �19�; u=mp1p2 / �2�t��. The reason for the choice of units is that A1 and A2

�or, equivalently, P1 and P2� commute if u−1 is an integer. This can easily be seen by noting that
gv�x�=Sign�sin�2�x /v�� and using the commutation relation for the Weyl operators. Moreover,
the converse is also true; see the general characterization of commuting functions of Q and P.6,24

In the commuting case the spectrum of H contains only the points 0 and 1, and we have A3=B3

=0. The CHSH inequality is then actually satisfied for all states, and the situation is classical.
It is interesting to observe that when the parameter u−1 is slightly perturbed from an integer,

the commutator norm �A3� discontinuously jumps to a nonzero value, which is large enough to
allow a violation of Bell’s inequality. In order to show this, we take u=1+�, with ��0. Now g2�

has the Fourier expansion,

g2��p� = �
n�Z

cn
1

�2�
einp,

where c−n=−cn and �n�Z�cn�u��2=�−�
� �su�p��2dp=2�. For each 0���1 /2 choose a unit vector

���L2�R� with support in �0,��. Then g1+��Q���=�� and

�g2��P�s1+��Q���� = g2��P��� = �
n�Z

1
�2�

cneinP��,

where the series converges in L2�R� because the terms are orthogonal. Since �einP����x�
=���x+n�, we get

g1+��Q�einP�� = �einP��, 0 � n �
1
2 �1/� − 1�

− einP��, − 1
2 �1 + 1/�� � n � 0.

�
It follows that

�g2��P�,s1+��Q���� = 2 �
−1/�2���n�−1

1
�2�

cneinP�� + ��,

where �� is orthogonal to the sum. Hence,

��g2��P�,s1+��Q����2 �
2

�
�

1�n�1/�2��
�cn�2.

Here the right hand side tends to 2 as �→0, which means that ��g2��P� ,gs1+��Q��� � ��2 for all
sufficiently small ��0. Hence, �A3� jumps discontinuously from 0 to some value larger than 1 /�2,
corresponding to the Bell correlation �6.
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APPENDIX: ALMOST SIMULTANEOUS DIAGONALIZATION OF Sign„Q… AND Sign„P…

The diagonalization is provided by the unitary operator W :L2�R�→L2�R� � C2 defined in Sec.
IV B. This can be written in the form

W
 = �FU+ � S����0,���Q�
 � �+ � + ���−�,0�
 � �− �� ,

where �� � are the eigenstates of �3, S is the Hadamard matrix S= �1 /�2�� 1 1
1 −1

�, and U+ is defined
in �26�. We will also set U−ªU+�.

For Sign�Q�, we get

W Sign�Q�W� = I � �1

by trivial calculation. The form of W Sign�P�W� is not so obvious, and the following computation
actually describes how to find a suitable W. Let ��L2�R� be a Schwartz space function, with
��0�=0. The set of such functions is dense in L2�R�. By using dominated convergence twice, and
then Fubini’s theorem �noting that �−�

� ���x�� / �x�dx���, we get

��Sign�P��� = lim
�→0+

�
�1,�2=�1

�
R�1,�2

2
��x�K�1,�2

� �x,y���y�dxdy ,

with

K�1,�2

� �x,y� ª
1

2�
� 1

��1x − i�x − y�
−

1

��2y + i�x − y�� ,

where R�1,�2

2 denotes the appropriate quadrant. Each kernel K�1,�2

� is invariant under dilations, i.e.,
aK�1,�2

� �x ,y�=K�1,�2

� �a−1x ,a−1y� for all a�0. Using this we can transform them into convolution

kernels, and then diagonalize using the Fourier transform. Indeed, put K̃�1,�2

� ���
ª2K�1,�2

� ��1e� ,�2e−��, ��R; this gives

K̃�1,�2

� ��� =
1

�� 1

�e� − 2iG�1,�2
���

−
1

�e−� + 2iG�1,�2
���� ,

where G��= �sinh � and G��= �cosh �. For ��0, each K̃�1,�2

� is both integrable and square

integrable, so we can put K̂�1,�2

� ���ª�Re−i��K̃�1,�2

� ���d�. Then we compute

�
R�1,�2

2
��x�K�1,�2

� �x,y���y�dxdy = �
R

d��U�1
������K̃�1,�2

� � U�2
�����

= �
R

d��FU�1
�����K̂�1,�2

� ����FU�2
����� = FU�1

��K̂�1,�2

� FU�2
�� .

It remains to take the limit �→0+. To this end, first note that since, e.g., ��e�−2iG�,�����−1

� �cosh ��−1 for any ��0, and since ��1 /cosh � is integrable, it follows that K̂�,�
� are bounded

uniformly for �, and K̂�,�
0 ��� exists with K̂�,�

0 ���=lim�→0+ K̂�,�
� ��� pointwise by dominated

convergence. Hence, the corresponding bounded multiplication operators on L2�R ,d�� converge
in the strong operator topology, giving
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lim
�→0+

FU�1
��K̂�,�

� FU�2
�� = FU�1

��K̂�,�
0 FU�2

�� .

Since K̃�,�
0 ���= � �i� cosh ��−1 are even functions, we have

K̂�,�
0 ��� = �

2

i�
�

0

� cos����
cosh �

d� = �
i

cosh���/2�
.

For diagonal elements, K̃�,�
0 = � �i� sinh ��−1, and the corresponding Fourier integral does not

exist. However, the limit K̂�,�
0 ���ª lim�→0+ K̂�,�

� ��� exists pointwise because K̃�,�
� is an odd

function; in fact,

K̂�,�
� ��� = − 2i�

0

�

sin����K̃�,�
� ���d� → �

2

�
�

0

� sin����
sinh �

d� = � tanh���

2
� , �A1�

as �→0+, the singularity at the origin being canceled by the factor sin����. We can now use, e.g.,

the bound �K̂�,�
� �����M����M��2+1�, where M = 2

��0
���sinh ��−1d���, and the fact that

�QFV���= �PV���� ���+2�Q����, to conclude that

lim
�→0+

FU�1
��K̂�,�

� FU�2
�� = FU�1

��K̂�,�
0 FU�2

�� .

The coefficient matrix is thus K̂0���=tanh��� /2��3−sech��� /2��2. Finally, taking into account
the Hadamard matrix S in the definition of W, we get the result

W Sign�P�W� = tanh�Q�/2� � �1 + sech�Q�/2� � �2.
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