43,144 research outputs found

    Multiple Current States of Two Phase-Coupled Superconducting Rings

    Full text link
    The states of two phase-coupled superconducting rings have been investigated. Multiple current states have been revealed in the dependence of the critical current on the magnetic field. The performed calculations of the critical currents and energy states in a magnetic field have made it possible to interpret the experiment as the measurement of energy states into which the system comes with different probabilities because of the equilibrium and non-equilibrium noises upon the transition from the resistive state to the superconducting state during the measurement of the critical currentComment: 5 pages, 5 figure

    Two loop stress-energy tensor for inflationary scalar electrodynamics

    Full text link
    We calculate the expectation value of the coincident product of two field strength tensors at two loop order in scalar electrodynamics on de Sitter background. The result agrees with the stochastic formulation which we have developed in a companion paper [2] for the nonperturbative resummation of leading logarithms of the scale factor. When combined with a previous computation of scalar bilinears [1], our current result also gives the two loop stress-energy tensor for inflationary scalar electrodynamics. This shows a secular decrease in the vacuum energy which derives from the vacuum polarization induced by the inflationary production of charged scalars.Comment: 62 pages, 1 eps figur

    Local Ranking Problem on the BrowseGraph

    Full text link
    The "Local Ranking Problem" (LRP) is related to the computation of a centrality-like rank on a local graph, where the scores of the nodes could significantly differ from the ones computed on the global graph. Previous work has studied LRP on the hyperlink graph but never on the BrowseGraph, namely a graph where nodes are webpages and edges are browsing transitions. Recently, this graph has received more and more attention in many different tasks such as ranking, prediction and recommendation. However, a web-server has only the browsing traffic performed on its pages (local BrowseGraph) and, as a consequence, the local computation can lead to estimation errors, which hinders the increasing number of applications in the state of the art. Also, although the divergence between the local and global ranks has been measured, the possibility of estimating such divergence using only local knowledge has been mainly overlooked. These aspects are of great interest for online service providers who want to: (i) gauge their ability to correctly assess the importance of their resources only based on their local knowledge, and (ii) take into account real user browsing fluxes that better capture the actual user interest than the static hyperlink network. We study the LRP problem on a BrowseGraph from a large news provider, considering as subgraphs the aggregations of browsing traces of users coming from different domains. We show that the distance between rankings can be accurately predicted based only on structural information of the local graph, being able to achieve an average rank correlation as high as 0.8

    Determining the influence and effects of manufacturing variables on sulfur dioxide cells

    Get PDF
    A survey of the Li/SO2 manufacturing community was conducted to determine where variability exists in processing. The upper and lower limits of these processing variables might, by themselves or by interacting with other variables, influence safety, performance, and reliability. A number of important variables were identified and a comprehensive design experiment is being proposed to make the proper determinations

    Vortex pairing in two-dimensional Bose gases

    Get PDF
    Recent experiments on ultracold Bose gases in two dimensions have provided evidence for the existence of the Berezinskii-Kosterlitz-Thouless (BKT) phase via analysis of the interference between two independent systems. In this work we study the two-dimensional quantum degenerate Bose gas at finite temperature using the projected Gross-Pitaevskii equation classical field method. While this describes the highly occupied modes of the gas below a momentum cutoff, we have developed a method to incorporate the higher momentum states in our model. We concentrate on finite-sized homogeneous systems in order to simplify the analysis of the vortex pairing. We determine the dependence of the condensate fraction on temperature and compare this to the calculated superfluid fraction. By measuring the first order correlation function we determine the boundary of the Bose-Einstein condensate and BKT phases, and find it is consistent with the superfluid fraction decreasing to zero. We reveal the characteristic unbinding of vortex pairs above the BKT transition via a coarse-graining procedure. Finally, we model the procedure used in experiments to infer system correlations [Hadzibabic et al., Nature 441, 1118 (2006)], and quantify its level of agreement with directly calculated in situ correlation functions.Comment: published versio

    Steady state of atoms in a resonant field with elliptical polarization

    Full text link
    We present a complete set of analytical and invariant expressions for the steady-state density matrix of atoms in a resonant radiation field with arbitrary intensity and polarization. The field drives the closed dipole transition with arbitrary values of the angular momenta JgJ_{g} and JeJ_{e} of the ground and excited state. The steady-state density matrix is expressed in terms of spherical harmonics of a complex direction given by the field polarization vector. The generalization to the case of broad-band radiation is given. We indicate various applications of these results.Comment: revtex, 26 pages, including 3 eps figures; PRA accepted for publication;v2 three typos are fixe

    Recurrences in Driven Quantum Systems

    Full text link
    We consider an initially bound quantum particle subject to an external time-dependent field. When the external field is large, the particle shows a tendency to repeatedly return to its initial state, irrespective of whether the frequency of the field is sufficient for escape from the well. These recurrences, which are absent in a classical calculation, arise from the system evolving primarily like a free particle in the external field.Comment: 10 pages in RevTeX format, with three PS files appende

    Bose-Einstein Condensation in a Confined Geometry with and without a Vortex

    Full text link
    Various widely-used mean-field type theories for a dilute Bose gas are critically examined in the light of the recent discovery of Bose-Einstein condensation of atomic gases in a confined geometry. By numerically solving the mean-field equations within the framework of the Bogoliubov approximation both stationary non-uniform case and the vortex case under rotation in a cylindrically symmetric vessel are investigated. We obtain spatial structures of condensate, non-condensate, anomalous correlation. The low lying excitation spectra, the local density of states and the circulating current density in a vortex corresponding to various levels of mean-field theories are predicted.Comment: 16 pages, LaTeX with jpsj.sty, 13 eps figures. Figures improve

    Optical control of photon tunneling through an array of nanometer scale cylindrical channels

    Full text link
    We report first observation of photon tunneling gated by light at a different wavelength in an artificially created array of nanometer scale cylindrical channels in a thick gold film. Polarization properties of gated light provide strong proof of the enhanced nonlinear optical mixing in nanometric channels involved in the process. This suggests the possibility of building a new class of "gated" photon tunneling devices for massive parallel all-optical signal and image processing.Comment: 4 pages, 4 figure
    • …
    corecore