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Recent experiments on ultracold Bose gases in two dimensions have provided evidence for the existence
of the Berezinskii-Kosterlitz-Thouless (BKT) phase via analysis of the interference between two independent
systems. In this work we study the two-dimensional quantum degenerate Bose gas at finite temperature using the
projected Gross-Pitaevskii equation classical field method. Although this describes the highly occupied modes
of the gas below a momentum cutoff, we have developed a method to incorporate the higher momentum states
in our model. We concentrate on finite-sized homogeneous systems in order to simplify the analysis of the
vortex pairing. We determine the dependence of the condensate fraction on temperature and compare this to the
calculated superfluid fraction. By measuring the first order correlation function we determine the boundary of
the Bose-Einstein condensate and BKT phases, and find it is consistent with the superfluid fraction decreasing
to zero. We reveal the characteristic unbinding of vortex pairs above the BKT transition via a coarse-graining
procedure. Finally, we model the procedure used in experiments to infer system correlations [Hadzibabic et al.,
Nature 441, 1118 (2006)], and quantify its level of agreement with directly calculated in situ correlation functions.
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I. INTRODUCTION

At low temperatures a three-dimensional (3D) Bose gas can
undergo a phase transition to a Bose-Einstein condensate. In
contrast, thermal fluctuations prevent a two-dimensional (2D)
Bose gas from making a phase transition to an ordered state,
in accordance with the Mermin-Wagner-Hohenberg theorem
[1,2]. However, the 2D Bose gas supports topological defects
in the form of vortices, and in the presence of interactions
can instead undergo a Berezinskii-Kosterlitz-Thouless (BKT)
[3–5] transition to a quasicoherent superfluid state. The BKT
transition was first observed in liquid helium thin films [6],
however, more recently, evidence for this transition has been
found in dilute Bose gases [7–11] (also see Refs. [12,13]).

Ultracold gases have proven to be beautiful systems for
making direct comparisons between experiment and ab initio
theory. Experiments in the 2D regime present a new challenge
for theory as strong fluctuations invalidate mean-field theories
(e.g., see Refs. [5,14–20]), and only recently have quantum
Monte Carlo [21,22] and classical field (c-field) [23–25]
methods been developed that are directly applicable to the
experimental regime.

In this article we study a uniform Bose gas of finite spatial
extent and parameters corresponding to current experiments.
To analyze this system we use the projected Gross-Pitaevskii
equation (PGPE), a c-field technique suited to studying finite
temperature Bose fields with many highly occupied modes.
We develop a technique for extracting the superfluid density
based on linear response properties, and use this to understand
the relationship between superfluidity and condensation in the
finite system.

With this formalism we then examine two important
applications: First, we provide a quantitative validation of
the interference technique used in the ENS experiment to
determine the nature of two-point correlation in the system.
To do this we simulate the interference pattern generated
by allowing two independent 2D systems to expand and

interfere. Then applying the experimental fitting procedure
to analyze the interference pattern we can extract the inferred
two-point correlations, which we can then compare against the
in situ correlations that we calculate directly. Second, we
examine the correlations between vortices and antivortices
in the system to directly quantify the emergence of vortex-
antivortex pairing in the low-temperature phase. A similar
study was made by Giorgetti et al. using a semiclassical field
technique [26]. We find results for vortex number and vortex
pair distributions consistent with their results, and we show
how a coarse-graining procedure can be used to reveal the
unpaired vortices in the system.

We now briefly outline the structure of this article: In
Sec. II we review the 2D Bose gas and relevant BKT physics. In
Sec. III we outline the c-field technique and how it is
specialized to describing a uniform, but finite, 2D Bose gas.
In Sec. IV we present our main results, before concluding.

II. FORMALISM

Here we consider a dilute 2D Bose gas described by the
Hamiltonian,

Ĥ =
∫

d2xψ̂†
{
−h̄2∇2

x

2m

}
ψ̂ + h̄2g

2m

∫
d2xψ̂†ψ̂†ψ̂ψ̂, (1)

where m is the atomic mass, x = (x, y), and ψ̂ = ψ̂(x) is the
bosonic field operator.

We take the two-dimensional geometry to be realized
by tight confinement in the z direction that restricts atomic
occupation to the lowest z mode. The dimensionless 2D
coupling constant is

g =
√

8πa

az

, (2)
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with az the spatial extent of the z mode1 and a the s-wave
scattering length. We will assume that az � a so that the
scattering is approximately three-dimensional [27], a condition
well-satisfied in the ENS and NIST experiments [7–9,11].
For reference, the ENS experiment reported in Ref. [8] had
g ≈ 0.15, whereas in the NIST experiments g ≈ 0.02 [11].

In contrast to experiments we focus here on the uniform
case; no trapping potential in the xy plane is considered. We
perform finite-sized calculations corresponding to a square
system of size L with periodic boundary conditions. Working
in the finite size regime simplifies the simulations and is
more representative of current experiments. We note that the
thermodynamic limit corresponds to taking L → ∞ while
keeping the density, n = 〈ψ̂†ψ̂〉, constant.

A. Review of BKT physics

The BKT superfluid phase has several distinctive charac-
teristics, which we briefly review.

1. First-order correlations

Below the BKT transition the first-order correlations decay
according to an inverse power law:

g(1)(x, x′) ∝ ‖x − x′‖−α. (3)

Systems displaying such algebraic decay are said to exhibit
“quasi-long-range order” [28]. This is in contrast to both the
high temperature (disordered phase) in which the correlations
decay exponentially, and long-range ordered case of the 3D
Bose gas in which g(1) → const. for ‖x − x′‖ → ∞.

2. Superfluid density

Nelson and Kosterlitz [29] found that the exponent of the
algebraic decay is related to the ratio of the superfluid density
and temperature. To within logarithmic corrections,

α(T ) = 1

λ2ρs(T )
, (4)

where ρs is the superfluid density and λ = h/
√

2πmkBT is
the thermal de Broglie wavelength. Furthermore, Nelson and
Kosterlitz showed that this ratio converges to a universal
constant as the transition temperature, TKT, is approached
from below: limT →T −

KT
α(T ) = 1/4 (i.e., ρsλ

2 = 4). Thus, the
superfluid fraction undergoes a universal jump from ρs(T

+
KT) =

0 to ρs(T
−

KT) = 4/λ2 as the temperature decreases through TKT.

3. Vortex binding transition

Another important indicator of the BKT transition is
the behavior of topological excitations, which are quantized
vortices and antivortices in the case of a Bose gas. A single
vortex has energy that scales with the logarithm of the system
size. At low temperatures this means that the free energy
for a single vortex is infinite (in the thermodynamic limit),
and vortices cannot exist in isolation. As originally argued
in Ref. [4], the entropic contribution to the free energy also

1For example, for tight harmonic confinement of frequency ωz we
have az = √

h̄/mωz.

scales logarithmically with the system size, and will dominate
the free energy at high temperatures allowing unbound vortices
to proliferate. This argument provides a simple estimate for the
BKT transition temperature.

Although unbound vortices are thermodynamically unfa-
vored at T < TKT, bound pairs of counter-rotating vortices
may exist since the total energy of such a pair is finite.2 This
leads to a distinctive qualitative characterization of the BKT
transition: as the temperature increases through TKT, pairs of
vortices unbind.

4. Location of the BKT transition in the dilute Bose gas

Although the relation ρs(T
−

KT) = 4/λ2 between the super-
fluid density and temperature at the transition is universal, the
total density, n, at the transition is not. General arguments
[30–32] suggest that the transition point for the dilute uniform
2D Bose gas is given by

(nλ2)KT = ln

(
ξ

g

)
, (5)

where ξ is a constant. Prokofév et al. [14,15] studied the
homogeneous Bose gas using Monte Carlo simulations of
an equivalent classical φ4 model on a lattice. Using an
extrapolation to the infinite-sized system, they computed
a value for the dimensionless constant, ξ = 380 ± 3. By
inverting Eq. (5), we obtain the BKT critical temperature for
the infinite system,

T ∞
KT = 2πh̄2n

mkB ln(ξh̄2/mg)
. (6)

We use the superscript ∞ to indicate that this result holds in
the thermodynamic limit.

III. METHOD

A. c-field and incoherent regions

We briefly outline the PGPE formalism, which is developed
in detail in Ref. [33]. The Bose field operator is split into two
parts according to

ψ̂(x) = ψC(x) + ψ̂I(x), (7)

where ψC is the coherent region c-field and ψ̂I is the incoherent
field operator (see [33]). These fields are defined as the low
and high energy projections of the full quantum field operator,
separated by the cutoff wave vector K . In our theory this
cutoff is implemented in terms of the plane wave eigenstates
{ϕn(x)} of the time-independent single particle Hamiltonian,
that is,

ϕn(x) = 1

L
e−ikn·x, (8)

kn = π

L
n, (9)

2The vortex-antivortex pair energy depend on the pair size rather
than the system size.
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with n = (nx, ny) ∈ Z2. The fields are thus defined by

ψC(x) ≡
∑
n∈C

cnϕn(x), (10)

ψ̂I(x) ≡
∑
n∈I

ânϕn(x), (11)

where the ân are Bose annihilation operators, the cn are
complex amplitudes, and the sets of quantum numbers defining
the regions are

C = {n : ‖kn‖ � K}, (12)

I = {n : ‖kn‖ > K}. (13)

1. Choice of C region

In general, the applicability of the PGPE approach to
describing the finite temperature gas relies on an appropriate
choice for K , so that the modes at the cutoff have an average
occupation of order unity. In this work we choose an average
of five or more atoms per mode using a procedure discussed
in appendix A. This choice means that all the modes in C are
appreciably occupied, justifying the classical field replacement
ân → cn. In contrast the I region contains many sparsely
occupied modes that are particle-like and would be poorly
described using a classical field approximation. Because our
2D system is critical over a wide temperature range, additional
care is needed in choosing C. Typically strong fluctuations
occur in the infrared modes up to the energy scale h̄2gn/m.
Above this energy scale the modes are well described by
mean-field theory (e.g., see the discussion in Refs. [14,34]).
For the results we present here, we have

h̄2K2

2m
� h̄2g

m
n, (14)

for simulations around the transition region and at high
temperature. At temperatures well below TKT, the requirement
of large modal occupation near the cutoff competes with this
condition and we favor the former at the expense of violating
Eq. (14).

2. PGPE treatment of C region

The equation of motion for ψC is the PGPE,

ih̄
∂ψC

∂t
= −h̄2∇2

x

2m
ψC + h̄2g

m
PC{|ψC|2ψC}, (15)

where the projection operator,

PC{F (x)} ≡
∑
n∈C

ϕn(x)
∫

d2x′ϕ∗
n(x′)F (x′), (16)

formalizes our basis set restriction of ψC to the C region. The
main approximation used to arrive at the PGPE is to neglect
dynamical couplings to the incoherent region [35].

We assume that Eq. (15) is ergodic [36], so that the
microstates {ψC} generated through time evolution form
an unbiased sample of the equilibrium microstates. Time
averaging can then be used to obtain macroscopic equilibrium
properties. We generate the time evolution by solving the
PGPE with three adjustable parameters: i) the cutoff wave
vector, K , which defines the division between C and I, and

hence the number of modes in the C region; ii) the number of
C region atoms, NC; iii) the total energy of the C region, EC.
The last two quantities, defined as

EC =
∫

d2xψ∗
C

(
−h̄2∇2

x

2m
+ h̄2g

2m
|ψC|2

)
ψC, (17)

NC =
∫

d2x|ψC(x)|2, (18)

are important because they represent constants of motion of the
PGPE (15), and thus control the thermodynamic equilibrium
state of the system.

3. Obtaining equilibrium properties for the C region

To characterize the equilibrium state in the C region it is
necessary to determine the average density, temperature, and
chemical potential, which in turn allow us to characterize the
I region (see Sec. III B). These and other C region quantities
can be computed by time averaging; for example, the average
C region density is given by

nC(x) ≈ 1

Ms

Ms∑
j=1

|ψC(x, tj )|2, (19)

where {tj } is a set of Ms times (after the system has been
allowed to relax to equilibrium) at which the field is sampled.
We typically use 2000 samples from our simulation to perform
such averages over a time of ∼ 16 s. Another quantity of
interest here is the first- order correlation function, which we
calculate directly via the expression,

G
(1)
C (x, x′) ≈ 1

Ms

Ms∑
j=1

ψ∗
C(x, tj )ψC(x′, tj ). (20)

Derivatives of entropy, such as the temperature (T ) and
chemical potential (µC), can be calculated by time averag-
ing appropriate quantities constructed from the Hamiltonian
Eq. (17) using the Rugh approach [37]. The detailed implemen-
tation of the Rugh formalism for the PGPE is rather technical
and we refer the reader to Refs. [38,39] for additional details
of this procedure.

A major extension to the formalism of the PGPE made in
this work is the development of a method for extracting the
superfluid fraction, ρs , from these calculations. For this we use
linear response theory to relate the superfluid fraction to the
long wavelength limit of the second-order momentum density
correlations. An extensive discussion of this approach, and
the numerical methods used to implement it, are presented in
Appendix D.

B. Mean-field treatment of I region

Occupation of the I region modes, NI, accounts for about
25% of the total number of atoms at temperatures near the
phase transition. We assume a time-independent state for the
I region atoms defined by a Wigner function [40], allowing
us to calculate quantities of interest by integrating over the
above-cutoff momenta, k > K [41,42].

Our assumed Wigner function corresponds to the self-
consistent Hartree-Fock theory as applied in Ref. [42]. In two
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dimensions this is

WI(k, x) = 1

(2π )2

1

e[EHF(k)−µ]/kBT − 1
, (21)

where

EHF(k) = h̄2k2

2m
+ 2h̄2g

m
(nC + nI), (22)

is the Hartree-Fock energy, nI is the I region density, and µ =
µC + 2h̄2gnI/m is the chemical potential (shifted by the mean-
field interaction with the I region atoms). Note that the average
densities are constant in the uniform system, so WI(k, x) has
no explicit x dependence, however, we include this variable for
generality when defining the associated correlation function.

The I region density appearing in Eq. (22) is given by

nI =
∫

‖k‖�K

d2kWI(k, x), (23)

with corresponding atom number NI = nIL
2; total number is

simply

N = NC + NI. (24)

An analytic expression for nI and simplified procedure for
numerically calculating the first-order correlation function
of the I region atoms, G

(1)
I , can be obtained by taking

integrals over the phase space. These results are discussed
in Appendix B.

C. Equilibrium configurations with fixed T and N

Generating equilibrium classical fields with given values
of EC and NC is straightforward since the PGPE simulates
a microcanonical system (see Appendix A3). However, we
wish to simulate systems with a given temperature and total
number. As described in the preceding two sections these can
only be determined after a simulation has been performed. In
Appendix A we outline a procedure for estimating values of
EC and NC for desired values of N and T based on a root-
finding scheme using a Hartree-Fock-Bogoliubov analysis for
the initial guess.

IV. RESULTS

We choose simulation parameters in analogy with the Paris
experiment of Hadzibabic et al. [8]. This experiment used
an elongated atomic cloud of approximately 105 87Rb atoms,
with a spatial extent (Thomas-Fermi lengths) of 120 and
10 µm along the two loosely trapped x and y directions. The
tight confinement in the z direction was provided by an optical
lattice.

Although our simulation is for a uniform system, we
have chosen similar parameters where possible. Our primary
simulations are for a system in a square box with L = 100 µm,
with 4 × 105 87Rb atoms. We also present results for systems
with L = 50 µm and L = 200 µm at the same density in
order to better understand finite-size effects. All simulations
are for the case of g = 0.15 corresponding to the experimental
parameters reported in Ref. [8].

The cutoff wave vector K varied with temperature to ensure
appropriate occupation of the highest modes (see Sec. III A1).
For the 100-µm system, the number of C region modes ranged

between 559 at low temperatures to 11338 at the highest
temperature studied.

A. Simulation of expanded interference patterns
between two systems

In order to make a direct comparison with the experimental
results of Ref. [8], we have generated synthetic interference
patterns and implemented the experimental analysis technique.
Our simulated imaging geometry is identical to that found in
Ref. [8], with expansion occurring in the z direction. The
interference pattern is formed in the x-z plane via integration
of the density along the y direction (“absorption imaging”).

Our algorithm for obtaining the interference pattern due
to our classical field is very similar to that presented in
Ref. [43]. Our above cutoff thermal cloud is taken into account
separately. We consider a pair of fields ψ

(1)
C (x, y), ψ (2)

C (x, y)
from different times during the simulation, chosen such that the
fields can be considered independent. The 3D wave function
corresponding to each field is reconstructed by assuming a
harmonic oscillator ground state in the tight-trapping direction.
These two reconstructed fields are spatially separated by
� = 3 µm, corresponding to the period of the optical lattice
in Ref. [43].

Given this initial state, we neglect atomic interactions and
only account for expansion in the tightly trapped direction.
This yields a simple analytical result for the full classical
field ψC(x, y, z, τ ) at later times. The contribution of the
above-cutoff atoms is included by an incoherent addition of
intensities. The result is integrated along the y direction to sim-
ulate the effect of absorption imaging with a laser beam, that is,

nim(x, z) =
∫ L′

0
dy

[∣∣ψ (T )
C (x, y, z, τ )

∣∣2 + nI(x, y, z, τ )
]
,

(25)

ψ
(T )
C = ψ

(1)
C (x, y, z, τ ) + ψ

(2)
C (x − �, y, z, τ ). (26)

Rather than integrate the full field along the y direction, we
use only a slice of length L′ = 10 µm in keeping with the
experimental geometry of Ref. [8].

The interference patterns, nim(x, z), generated this way
contained fine spatial detail not seen in the experimental
images. To make a more useful comparison to experiment it is
necessary to account for the finite optical imaging resolution
by applying a Gaussian convolution in the x-z plane with
standard deviation 3 µm. [44].

In accordance with the Paris experiment, we use a 22-ms ex-
pansion time to generate interference patterns for quantitative
analysis (see Sec. IV C2). To obtain characteristic interference
images for display in Ref. [8], the experiments used a shorter
11-ms expansion [44]. We exhibit examples of interference
patterns at various temperatures in Fig. 1, for this shorter
expansion time. These images show a striking resemblance
to the results presented in Ref. [8].

B. Condensate and superfluid fractions

For a 2D Bose gas in a box we expect a nonzero condensate
fraction due to the finite spacing of low-energy modes. A
central question is whether we can observe a distinction
between the crossover due to Bose condensation and that due to
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FIG. 1. Synthetic interference patterns generated from the 50-µm
grid by simulation of the experimental procedure of Ref. [8]. (a) At
low temperatures, T ≈ 0.5TKT, the interference fringes are straight.
(b) Just below the transition temperature, T ≈ 0.95TKT, the fringes
become wavy due to decreased spatial phase coherence. Phase
dislocations become common at temperatures above the transition,
(c) T ≈ 1.05TKT and (d) T ≈ 1.1TKT. These “zipper patterns”
indicate the presence of free vortices. (e) When simulation of the finite
imaging resolution is disabled, the zipper patterns from the field in
subfigure (d) are no longer clearly visible; the high-frequency details
obscure the phase information without providing obvious additional
information about the existence of vortex pairs.

BKT physics. To address this question we have computed both
the condensate and superfluid fractions from our dynamical
simulations.

The condensate fraction in a homogeneous system is
easily identified as the average fractional occupation of the
lowest momentum mode. This is directly available from our
simulations as a time average of the k = 0 mode of the classical
field,

fc = 〈c∗
0c0〉/N. (27)

Extracting the superfluid fraction from dynamical classical
field simulations provides a more difficult challenge. For this
we use linear response theory to relate the superfluid fraction
to the long wavelength limit of the second-order momentum

0 50 100 150 200 250

0

0.2

0.4

0.6

0.8

1

T
KT
∞ T

KT

T [nK]

FIG. 2. (Color online) Condensate fraction (solid dots) and
superfluid fraction (crosses) as functions of temperature for the
100-µm2 grid. The transition temperature in the thermodynamic limit,
T ∞

KT [14], is shown as a vertical dot-dashed line. The vertical dashed
line shows our estimate for the transition temperature in the finite
system. The thick solid line is the condensate fraction for an ideal Bose
gas in the grand canonical ensemble with the same number of atoms
and periodic spatial domain. The superfluid fraction becomes negative
in places because the extrapolation of the momentum correlations
to k = 0 is sensitive to statistical noise at high temperature (see
Appendix D2 for details).

density correlations. Details concerning the technique are
given in Appendix D.

Figure 2 compares the results for the superfluid and
condensate fractions computed on the 100-µm grid. These
results are qualitatively similar to the results for the larger and
smaller grids. In particular, we note that there is no apparent
separation between temperatures at which the superfluid and
condensate fractions fall to zero. Also shown in Fig. 2 is
the condensate fraction for the ideal Bose gas confined to an
identical finite-size box in the grand canonical ensemble. The
large shift between ideal and computed transition temperatures
indicates the effect of interactions in the 2D system. Because
the average system density is uniform, this large shift is to due
to critical fluctuations (also see Ref. [34]).

In our calculations we identify the transition temperature,
TKT, as where the superfluid fraction falls off most rapidly
[i.e., the location of steepest slope on the ρs versus T graph
(see Fig. 2)]. As the system size increases, this transition
temperature moves toward the value for an infinite-sized
system, T ∞

KT [14]. This effect is illustrated by the behavior
of the superfluid fraction in Fig. 3.

C. First-order correlations—algebraic decay

Algebraic decay of the first-order correlations, as described
by Eq. (3), is a characteristic feature of the BKT phase. Above
the BKT transition, the first-order correlations should revert to
the exponential decay expected in a disordered phase.
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T
KT
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T [nK]

FIG. 3. (Color online) Detail of the superfluid fraction near the
transition temperature. Solid dots represent the calculation based on
momentum correlations as described in Appendix D. Results for the
largest and smallest grids are shown (left and right, respectively). The
data for the 100-µm grid are omitted for clarity, but lie between the
curves shown as expected. Open circles represent the calculation of
the superfluid fraction from the associated fitted values for the decay
coefficient α, via Eq. (4). The open circles terminate where the power
law fitting procedure fails.

The normalized first-order correlation function, g(1) is
defined by

g(1)(x, x′) = G(1)(x, x′)√
n(x)n(x′)

, (28)

where G(1)(x, x′) = 〈ψ̂†(x)ψ̂(x′)〉 is the unnormalized first-
order correlation function [40].

1. Direct calculation of g(1)

In the PGPE formalism, the C and I contributions to the
correlation function are additive [41], that is,

G(1)(x, x′) = G
(1)
C (x, x′) + G

(1)
I (x, x′), (29)

where G
(1)
C and G

(1)
I are defined in Eqs. (20) and (B8), respec-

tively. It is interesting to note that G
(1)
C and G

(1)
I individually

display an oscillatory decay behavior—originating from the
cutoff—an effect that correctly cancels when the two are added
together.

Having calculated g(1), we obtain the coefficient α by
fitting the algebraic decay law, Eq. (3), using nonlinear least
squares; sample fits are shown in Fig. 4. The fit is conducted
over the region between 10 and 40 de Broglie wavelengths.
The short length scale cutoff is to avoid the contribution of
the non-universal normal atoms, for which the thermal de
Broglie wavelength sets the appropriate decay length. The long
distance cutoff is chosen to be small compared to the length
scale L, to avoid the effect of periodic boundary conditions on
the long-range correlations.

The quality of the fitting procedure, and the breakdown
of expression (3) at the BKT transition can be observed by
adding an additional degree of freedom to the fitting function.
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g(1
) (x

)
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1
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−2
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−1

10
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ln(x) [µm]

ln
[g

(1
) (x

)]

FIG. 4. (Color online) Sample fits to the algebraic decay of g(1)

at various temperatures, ranging from below to above the transition.
High temperatures correspond to curves at the bottom of the figure,
which have rapid falloff of g(1) with distance. Fits are shown on a
log-log scale in the inset to emphasize the failure of a power law in
describing the behavior of g(1) at high temperature.

In particular, at each temperature we fit the quadratic ln(g(1)) =
A − α̃ ln(x) + δ ln2(x) and extract the parameter δ (α̃ ≈ α is
discarded). The abrupt failure of the fits can be observed in the
inset of Fig. 5 as a sudden increase in the value of |δ(T )|—an

0 50 100 150 200
0

0.1

0.2

0.3

0.4

0.5

0.6

T [nK]

α

T
KT

0 100 200
0

0.2

0.4 T
KT

FIG. 5. (Color online) Comparison of two methods for deter-
mining the algebraic decay coefficient α(T ) for the first-order
correlation function g(1)(x, x′). The line with circle markers represents
direct fits to g(1). These fits fail at the transition temperature as
shown by the sharply diverging value of |δ(T )| in the inset. The
filled points represent the values α′(T ) obtained from a simulation
of the experimental analysis procedure of Ref. [8], described in
Sec. IV C 2. Horizontal dotted lines at 0.25 and 0.5 correspond
to the expected values of α′ just below and above the transition,
respectively [8]. The vertical line is the BKT transition temperature,
as estimated from the superfluid fraction calculated in Sec. IV B.
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effect that is in excellent agreement with the value of TKT as
estimated from the superfluid fraction.

2. Calculation of g(1) via interference patterns

So far a direct probe of the in situ spatial correlations has
not been possible, although important progress has been made
by the NIST group [11]. In the experiments of Hadzibabic
et al. [8], a scheme proposed by Polkovnikov et al. [45] was
used to infer these correlations from the “waviness” of inter-
ference patterns produced by a pair of quasi-2D systems (see
Sec. IV A). In this section we simulate the experimental data
analysis method, and compare inferred predictions for the cor-
relation function against those we can directly calculate. This
allows us to characterize the errors associated with this tech-
nique arising from finite size effects and finite expansion time.

To make this analysis we follow the procedure outlined in
Ref. [8]. We fit our numerically generated interference patterns
(see Sec. IV A) to the function,

F (x, z) = G(z)

[
1 + c(x) cos

(
2πz

D
+ θ (x)

)]
, (30)

where G(z) is a Gaussian envelope in the z direction, c(x) is
the interference fringe contrast, D is the fringe spacing, and
θ (x) is the phase of the interference pattern in the z direction.

Defining the function,

C(Lx) = 1

Lx

∫ Lx/2

−Lx/2
c(x)eiθ(x)dx, (31)

the nature of spatial correlations is then revealed by the manner
in which 〈|C(Lx)|2〉 decays with Lx . In particular, we identify
the parameter α′, defined by 〈|C(Lx)|2〉 ∝ L−2α′

x [45]. For an
infinite 2D system in the superfluid regime (T < T ∞

KT) α′ = α

(i.e., α′ corresponds to the algebraic decay of correlations). For
T > T ∞

KT, where correlations decay exponentially, α′ is equal
to 0.5.

Fitting 〈|C(Lx)|2〉 to the algebraic decay law AL −2α′
x we

can determine α′. A comparison between α′ inferred from the
interference pattern and α obtained directly from g(1) is shown
in Fig. 5. Both methods give broadly consistent predictions
for α when T < TKT, however, our results show that there is
a clear quantitative difference between the two schemes, and
that α′ underestimates the coefficient of algebraic decay in
the system [i.e., using α′ in Eq. (4) would overestimate the
superfluid density]. Near and above transition temperature,
where the fits to g(1) fail, we observe that α′ converges toward
0.5. The agreement between α and α′ in the low-temperature
region improves as the size of the grid is increased.

D. Vortices and pairing

The simplest description of the BKT transition is that it
occurs as a result of vortex pair unbinding: At T < TKT vortices
only exist in pairs of opposite circulation, which unbind at
the transition point to produce free vortices that destroy the
superfluidity of the system. However, to date there are no direct
experimental observations of this scenario, and theoretical
studies of 2D Bose gases have been limited to qualitative
inspection of the vortex distributions. In the c-field approach,
vortices and their dynamics are clearly revealed, unlike other
ensemble-based simulation techniques where the vortices are
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FIG. 6. (Color online) Phase profile of a c-field with vortices
indicated. Vortices with clockwise (+) and anticlockwise (◦) cir-
culation. The phase of the classical field is indicated by shading
the background between dark (phase 0) and light (phase 2π ).
(a) Distinctive pairing below the transition at T = 207 nK ≈
0.93TKT. (b) A “vortex plasma” above the transition at T = 238 nK ≈
1.07TKT.

obscured by averaging. This gives us a unique opportunity to
investigate the role of vortices and pairing in a dilute Bose gas.

We detect vortices in the c-field microstates by analyzing
the phase profile of the instantaneous field (see Appendix C).
An example of a phase profile of a field for T < TKT is shown
in Fig. 6(a). The vortex locations reveal a pairing character
[i.e., the close proximity of pairs of positive (clockwise) and
negative (counterclockwise) vortices relative to the average
vortex separation]. An important qualitative feature of our
observed vortex distributions is that at high temperatures,
pairing does not disappear from the system entirely. Indeed,
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FIG. 7. (Color online) Total number of vortices (dots) and number
of unpaired vortices (circles) as a function of temperature near the
transition. Although Nv at the transition temperature is already very
high, Nu becomes nonzero only close to the transition, providing clear
evidence of vortex unbinding at work. The inset shows the variation
in the total number over the full temperature range of the simulations.
Above the transition temperature the growth in the number of vortices
becomes linear with temperature.

most vortices at high temperature could be considered paired
or grouped in some manner, as shown in Fig. 6(b). Perhaps
this is not surprising, since positive and negative vortices have
a logarithmic attraction, and we observe them to create and
annihilate readily in the c-field dynamics. However, this does
indicate that the use of pairing to locate the transition may be
ambiguous, and we examine this aspect further below.

It is also of interest to measure the number of vortices,
Nv , present in the system as a function of temperature (see
Fig. 7). At the lowest temperatures the system is in an ordered
state, and the energetic cost of having a vortex is prohibitive.
As the temperature increases there is a rapid growth of vortex
population leading up to the transition point followed by linear
growth above TKT.

1. Radial vortex density

The most obvious way to characterize vortex pairing is by
defining a pair distribution function for vortices of opposite
sign. Adopting the notation of Ref. [26], this is

G
(2)
v,±(r) = 〈ρv,+(0)ρv,−(r)〉, (32)

where ρv,+ is the vortex density function, which consists of a
sum of δ spikes,

ρv,+(r) =
Nv,+∑
i=1

δ(r − r+
i ),

for positive vortices at positions {r+
i }. We use the analogous

definition for ρv,−. The associated dimensionless two-vortex
correlation function is

g
(2)
v,±(r) = G

(2)
v,±(r)

〈ρv,+(0)〉〈ρv,−(r)〉 . (33)
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FIG. 8. (Color online) Angular average of the two-vortex pair
distribution functions for vortices of opposite sign. Three temper-
atures centered about the transition are shown: dot markers T =
194 nK ≈ 0.9TKT, fc = 0.34; circle markers T = 217 nK ≈ 1.01TKT,
fc = 0.076; cross markers T = 236 nK ≈ 1.1TKT, fc = 0.006. The
vertical dotted line shows the value of the healing length at T = 0.
The main plot shows g

(2)
v,± normalized by the positive vortex density;

comparable magnitudes for the peaks near r = 0 show that vortex
pairing remains important over the range of temperatures studied,
not only below the transition. The inset shows g

(2)
v,± in the natural

dimensionless units for which g
(2)
v,±(r) → 1 as r → ∞.

The angular average of g
(2)
v,± can be calculated directly from

the detected vortex positions using a binning procedure on the
pairwise distances ‖r+

i − r−
j ‖, and is shown in Fig. 8.

These results quantify the effect discussed earlier: Positive
and negative vortices show a pairing correlation that does not
disappear above TKT. The characteristic size of this correlation,
given by twice the width of the peak feature in Fig. 8, is
lcor ∼ 3 µm (taking full width half-maximum).

The shape of our pairing peak is qualitatively similar to
that described in Ref. [26]. However, in contrast to their
results the width does not appear to change appreciably with
temperature. Additional simulations show that increasing the
interaction strength causes the peak to become squarer and
wider. It is clear that while the pair size and strength revealed
in g

(2)
v,±(r) does not change appreciably as the transition is

crossed, the amount of pairing relative to the background
uncorrelated vortices changes considerably. This background
of uncorrelated vortices is given by the horizontal plateau
g

(2)
v,±(r) → 1 at large r as shown in the inset.

2. Revealing unpaired vortices with coarse graining

The function G
(2)
v,±(r) clearly indicates the existence of

vortex pairing in the system. However, it does not provide
a convenient way to locate the transition temperature, since
a large amount of pairing exists both below and above the
transition: The expected number of neighbors for any given
vortex—roughly, the area of the pairing peak of 〈nv,+〉G(2)

v,±(r)
shown in Fig. 8—does not change dramatically across the
transition; 〈nv,+〉 = 〈nv〉/2 is the expected density of positive
vortices.
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FIG. 9. (Color online) The coarse-graining procedure: number
of vortices as a function of filter width for a temperature near the
transition. The smooth curve is an average over many realizations of
the field, whereas the stepped curve shows typical behavior of the
number for a single field. Insets show the coarse-grained fields for
various filter widths; the transformation removes vortex-antivortex
pairs, which are separated by approximately less than the standard
deviation of the filter. In this example, Nu = 4 unpaired vortices
remain at σf = 5 µm.

We desire a quantitative observation of vortex unbinding at
the transition and have therefore investigated several measures
of vortex pairing.3 However, measures based directly on the
full set of vortex positions seem to suffer from the proliferation
of vortices at high temperature—an effect that tends to wash
out clear signs of vortex unbinding. With this in mind, we have
developed a procedure for measuring the number of unpaired
vortices in our simulations, starting from the classical field
rather than the full set of vortex positions.

The basis of our approach for detecting unpairing is to
coarse-grain the classical field by convolution with a Gaussian
filter of spatial width (standard deviation) σf . This removes
all vortex pairs on length scales smaller than than σf . Figure 9
shows the count of remaining vortices as a function of filter
width, along with some examples of coarse-grained fields. For
σf � lcor, the number of remaining vortices levels off and only
decreases slowly with increasing σf . Ultimately, the number
of remaining vortices goes to zero as σf → L.

Setting the filter width to be larger than the characteristic
pairing distance, lcor, yields a coarse-grained field from which
the pairs have been removed, but unpaired vortices remain.
In our simulations we have lcor ≈ 3 µm; we take the vortices
that remain after coarse-graining with a Gaussian of standard
deviation σf = 5 µm to give an estimate of the number
of unpaired vortices, Nu. Figure 7 shows that Nu becomes
nonzero only near the transition, in contrast to Nv , which is
nonzero well below TKT. The sharp increase in Nu at TKT is a
quantitative demonstration of vortex unbinding at work.

3For example, the Hausdorff distance (see, e.g., Ref. [52]) between
the set {r+

i } of positive vortices and the set {r−
i } of negative vortices.
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FIG. 10. (Color online) Comparison of vortex unpairing mea-
sures. The dots are our pairing measure based on coarse graining the
field. Circles represent the pairing as determined by the number of
dislocations in the simulated interference patterns. This was the same
method used in the experimental analysis of Ref. [8] and coincides
remarkably well with our coarse-graining-based measure. Both
curves are consistent with the vertical line showing the transition tem-
perature TKT as determined from the superfluid fraction calculation in
Sec. IV B. The inset shows the calculated coarse-grained pairing
measure for all three grid sizes, along with vertical lines showing the
estimates for TKT derived from the superfluid fraction calculations.

In the experiment of Ref. [8], the fraction of interference
patterns with dislocations [e.g., see Figs. 1(c) and 1(d)] was
measured. Although isolated vortices are clearly identified by
interference pattern dislocations, a lack of spatial resolution in
experiments means that this type of detection method obscures
the observation of tightly bound vortex pairs. The experimental
resolution of 3 µm is broadly consistent with the scale of the
coarse-graining filter (i.e., σf = 5 µm). With this in mind,
we introduce the quantity pu(T ), defined as the probability of
observing an unpaired vortex in a 50- × 50-µm control volume
at a given temperature.4 For the 50-µm grid, we have simply
pu(T ) = P (Nu � 1).

Computing pu(T ) from our simulations yields the results
shown in Fig. 10. Our results show a dramatic jump in
pu at a temperature that is consistent with the transition
temperature TKT determined from the superfluid fraction
calculation presented in Sec. IV B.

From the definition, we expect that pu should be close
to the experimentally measured frequency of dislocations. To
demonstrate this relationship, we have simulated interference
patterns (as described in Sec. IV A) and detected dislocations
using the experimental procedure of Ref. [8]: A phase
gradient dθ/dx was considered to mark a dislocation whenever
|dθ/dx| > π/4 rad/µm. From this we can compute the
probability of detecting at least one dislocation as a function of
temperature. As shown in Fig. 10, the results of this procedure

4We choose a fixed control volume with L = 50 µm in order to
compare results between simulations with different grid sizes.
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compare very favorably with our measure of pairing based
on pu. We note that inhomogeneous effects in experiments
probably broaden the jump in pu appreciably compared to our
homogeneous results.

V. CONCLUSION

In this article we have used c-field simulations of a
finite-sized homogeneous system in order to investigate the
physics of the 2D Bose gas in a regime corresponding to current
experiments. We have directly computed the condensate and
superfluid fractions as a function of temperature, and made
comparisons to the superfluid fraction inferred by the first-
order correlation function, and using the interference scheme
used in experiments. Our results for these quantities provide a
quantitative test of the interference scheme for a finite system.

A beautiful possibility is the direct experimental observa-
tion of vortex-antivortex pairs, their distribution in the system,
and hence a quantitative measurement of their unbinding at
the BKT transition. We have calculated the vortex correlation
function across the transition and provided a coarse-graining
scheme for distinguishing unpaired vortices. These results
suggest that the dislocations observed in experiments, due
to limited optical resolution, provide an accurate measure of
the unpaired vortex population and accordingly are a strong
indicator of the BKT transition.

We briefly discuss the effect that harmonic confinement
(present in experiments) would have on our predictions. The
spatial inhomogeneity will cause the superfluid transition to
be gradual, occurring first at the trap center where the density
is highest, in contrast to our results where the transition
occurs in the bulk. So far the superfluid fraction for the
trapped system has been determined by using the universality
result for the critical density in the homogeneous gas [15]
in combination with the local density approximation [21,25].
It would be interesting to be able to compute the superfluid
fraction independently as we have done here; however, it is
not clear how to do so.

Bisset et al. [25] used an extension of the c-field method for
the trapped 2D gas to examine g(1) and found similar results
for the onset of algebraic decay of correlations at the transition.
Their analysis was restricted to the small region near the trap
center where the density is approximately constant; we expect
the results of our vortex correlation function and the coarse-
graining scheme should similarly be applicable to the trapped
system in the central region. Except in very weak traps, the
size of this region is relatively small and will likely prove
challenging to measure experimentally.

Our results for the homogeneous gas emphasize the
clarity with which ab initio theoretical methods can calculate
quantities directly observable in experiments, such as inter-
ference patterns. This should allow direct comparisons with
experiments, providing stringent tests of many-body theory.
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APPENDIX A: SIMULATION USING THE PGPE

Here we outline our procedure for determining the proper-
ties of the C region and the steps used to create initial states for
the PGPE solver. The C region itself is characterized by the
cutoff momentum K , while the initial states are characterized
by the energy EC and number NC. We want to obtain values
of these three properties, which are consistent with a specified
temperature T and total number of atoms N .

1. Hartree-Fock-Bogoliubov analysis

To generate an initial estimate of the C region parameters
we solve the self-consistent Hartree-Fock-Bogoliubov (HFB)
equations in the Popov approximation [46] to find an approx-
imate thermal state for the system at a temperature T . The
resulting state is a Bose Einstein distribution of quasiparticles
interacting only via the mean field, expressed in terms of the
quasiparticle amplitudes uk and vk.

Occupations for the C region field may be computed
directly from the quasiparticle occupations via

nk = (
u2

k + v2
k

)
NB(Ek) + v2

k, (A1)

where NB is the Bose Einstein distribution and Ek is
the quasiparticle energy, which is obtained by solving the
Bogoliubov-de Gennes equations self-consistently [46]. This
allows us to compute the cutoff as the maximum value of ‖k‖
consistent with sufficient modal occupation:

K = max{‖k‖ : nk � ncut}. (A2)

We choose ncut = 5 for the sufficient occupation condition on
the C region modes.

The number of atoms below the cutoff may be computed
directly from the sum of the condensate number N0 and the
number of C region excited state atoms, N1C:

NC = N0 + N1C, where N1C =
∑

k∈C\{0}
nk. (A3)

For the total energy below the cutoff, we use the expression,

EC = h̄2

mL2

(
gN2

0

2
+ λN1C − gN2

1C

)

+
∑

k∈C\{0}
Ek

[
NB(Ek) − v2

k

]
, (A4)

where λ = g(N0 + 2N1C). Rearranging, this is

EC = h̄2g

2mL2

(
N2

C + N2
1C

) +
∑

k∈C\{0}
Ek

[
NB(Ek) − v2

k

]
. (A5)

The expression (A5) differs from Eq. (22) of Ref. [46] as we
have retained the zeroth order (constant) terms that are required
to match the energy scale of the HFB analysis to the zero point
of energy in the classical field simulations.

2. Initial conditions for fixed total number

A simple comparison between simulations at varying
temperatures can only be carried out if the total number of
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atoms is fixed. This presents a problem in our simulations:
although the number of atoms and energy of the C region can
be directly specified (see Sec. A3), we may only determine the
total number after performing a simulation. This is because the
number of atoms in the I region depends on the temperature and
chemical potential, which are calculated by ergodic averaging
of the C region simulations.

Formally, this may be stated as a root-finding problem:
solve

N (NC, EC) = Ntot, (A6)

with initial guess provided by the solution to the HFB analysis
in Sec. A1. Although both NC and EC affect the total number
N , we choose to fix NC to the initial guess and to vary EC until
the desired total number is found.

We note that evaluating the function N (NC, EC) is very
computationally expensive and difficult to fully automate since
it involves a simulation and several steps of analysis. For
this reason we use a nonstandard root finding procedure: For
the first iteration we simulate three energies about the initial
guess EC such that the results crudely span Ntot; these three
simulations can be performed in parallel, which significantly
reduces the time to a solution. A second guess was obtained
by quadratic fitting of EC as a function of N , which gives
N accurate to within about 5% of Ntot. An addition iteration
using the same interpolation method takes N to within 0.3%,
which we consider sufficient.

We note that changing EC during the root-finding procedure
means we have no direct control over the final temperature of
each specific simulation. In our case this is not a problem
because we only require a range of temperatures spanning the
transition. In principle one could solve for a given temperature
by allowing NC to vary in addition to EC.

3. Initial conditions for given EC and NC

We compute initial conditions for the C region field in a
similar way to Ref. [47]. Using the representation for the C
region given by Eq. (10), the task is to choose appropriate
values for the {cn}. As a first approximation, choose the
smallest value for a momentum cutoff K ′ such that the field
with coefficients

cn =
{

Aeiθn for 0 < ‖k‖ � K ′,
0 for |k| > K ′, (A7)

has energy greater than EC. Here A is chosen so that the
field has normalization corresponding to NC atoms, and θn is
a randomly chosen phase that is fixed for each mode at the
start of the procedure. The random phases allow us to generate
many unique random initial states at the same energy.

By definition, the field defined by Eq. (A7) has energy
slightly above the desired energy. This problem is solved by
mixing it with the lowest energy state:

cn =
{

A′eiθ0 for n = 0,

0 elsewhere,
(A8)

using a root-finding procedure to converge on the desired
energy EC. The scheme generates random realizations of a
nonequilibrium field with given EC and NC, which are then

simulated to equilibrium before using ergodic averaging for
computing statistics.

APPENDIX B: I REGION INTEGRALS

Our assumed self-consistent Wigner function (Sec. III B)
for the I region atoms takes a particularly simple form in the
homogeneous case:

W (k, x) = 1

(2π )2

1

e(h̄2k2/2m+2h̄2gnC/m−µC)/kBT − 1
. (B1)

The above-cutoff density may then be found by direct
integration:

nI(x) =
∫

‖k‖�K

d2k WI(k, x), (B2)

= − 1

λ2
ln

[
1 − e−(h̄2K2/2m+2h̄2gnC/m−µC)/kBT

]
, (B3)

with λ the thermal de Broglie wavelength.
In a similar way, the assumed Wigner function allows any

desired physical quantity to be estimated via a suitable integral.
A particular quantity of interest in the current work is the
first-order correlation function, which can be obtained from
the Wigner function as (see Ref. [40])

G
(1)
I (x, x′) =

∫
‖k‖�K

d2k e−ik·(x−x′) WI

(
k,

x + x′

2

)
. (B4)

This integral is of the general form,

I1(r) :=
∫

‖k‖>K

d2k
e−ik·r

eAk2+B − 1
, (B5)

for constants A and B. Noting that I1 depends only on the
length, r of ‖r‖, and transforming k to polar coordinates (κ, θ ),
we have

I1(r) =
∫ ∞

K

dκ
κ

eAκ2+B − 1

∫ 2π

0
dθ e−irκ cos θ , (B6)

=
∫ ∞

K

dκ
κ

eAκ2+B − 1
2

[
�

(
1

2

)]2

J0(rκ), (B7)

(see Ref. [48] for the Bessel function identity).
Thus, we obtain G

(1)
I (x, x′) in terms of a one-dimensional

integral, which may be performed numerically:

G
(1)
I (x, x′) = 1

2π

∫ ∞

K

dκ
κJ0(κ‖x − x′‖)

e(h̄2κ2/2m+2h̄2gnC/m−µC)/kBT − 1
.

(B8)

APPENDIX C: VORTEX DETECTION

The defining feature of a “charge-m” vortex is that the
phase θ of the complex field ψ(x) = |ψ(x)|eiθ(x) changes
continuously from 0 to 2mπ around any closed curve that
circles the vortex core. We express our field ψ on a discrete
grid in position space; the aim of vortex detection is then to
determine which grid plaquettes (that is, sets of four adjacent
grid points) contain vortex cores.

To obtain the phase winding about a plaquette, first
consider the phase at two neighboring grid points A and B.
We are interested in the unwrapped phase difference �θAB
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between the grid points; unwrapping ensures that the phase
is continuous between A and B. (In the discrete setting,
such continuity is poorly defined; the best we can do is to
correct for the possibility of 2π phase jumps by adding or
subtracting factors of 2π so that |�θAB| < π .) The unwrapped
phase differences around a grid plaquette tell us a total
phase change θwrap = ∑

i �θi,i+1 = 2mπ , where m ∈ Z is the
winding number or “topological charge.”

Due to the necessity of unwrapping the phase, a four-point
grid plaquette cannot unambiguously support vortices with
charge larger than one. Luckily, such vortices are energetically
unfavorable in 2D Bose gases [49] so we need only concern
ourselves with detecting vortices with winding number ±1
in this work. The positions obtained from a given run of our
vortex detection algorithm are the labeled {r+

i } and {r−
i } for

winding numbers +1 and −1, respectively.

APPENDIX D: SUPERFLUID FRACTION

One of the important characteristics of the BKT transition
is the presence of superfluidity, even in the absence of
conventional long-range order. In the following we describe a
method to calculate the superfluid fraction from our classical
field description. The method is attractive because it makes use
of momentum correlations that may be extracted directly from
our equilibrium simulations without any need to introduce
additional boundary conditions or moving defects.

1. Superfluid fraction via momentum density correlations

Our derivation is based on the procedure presented in Ref.
[50] (see also Refs. [51] and [49]). The central idea is to
establish a relationship between i) the autocorrelations of the
momentum density in the simulated ensemble, and ii) the linear
response of the fluid to slowly moving boundaries; (i) is a
quantity we can calculate, while (ii) is related to the basic
properties of a superfluid via a simple thought experiment.

u

u

lim
Ly→∞ lim

Ly→∞

lim
Lx→∞

lim
Lx→∞SuperfluidL

y

Lx(a) (b)

(c) (d)

FIG. 11. Thought experiment used in deriving the superfluid
density. The walls move with velocity u in the x direction. To begin
with, we imagine that the superfluid sits in a box of dimensions
Lx × Ly as shown in (a). We later take the limit as the box walls
recede to infinity to get the thermodynamic limit (d). The order of the
limits is critically important: the path (b) leads to superflow while the
path (c) results in the entire fluid moving along with the walls.

To connect the macroscopic, phenomenological description
of superfluidity with our microscopic theory, we make use of
the thought experiment shown schematically in Fig. 11(b):
Consider an infinitely long box, B containing superfluid, and
accelerate the box along its long axis until it reaches a small
velocity u. Due to viscous interactions with the walls, such
a box filled with a normal fluid should have a momentum
density at equilibrium of 〈p̂〉u = nu. The notation 〈·〉u denotes
an expectation value in the ensemble with walls moving with
velocity u.

Because superfluids are nonviscous, the observed value for
the momentum density in a superfluid is less than the value nu
expected for a classical fluid. In Landau’s two-fluid model we
attribute the observed momentum density, ρnu, to the “normal
fraction” where ρn is the normal fluid density. The superfluid
fraction remains stationary in the laboratory frame, even at
equilibrium and makes up the remaining mass with density
ρs = n − ρn.

In order to apply the usual procedures of statistical
mechanics to the thought experiment, we consider two frames:
the “laboratory frame” in which the walls move with velocity
u in the x direction and the “wall frame” in which the walls
are at rest.

Assuming that the fluid is in thermal equilibrium
with the walls, the density matrix in the grand canon-
ical ensemble is given by the usual expression ρ̂ =
e−β(Hu−µN)/Tr(e−β(Hu−µN)), where Hu is the Hamiltonian of
the system in the wall frame and β = 1/kBT . A Galilean
transformation relates Hu to the Hamiltonian in the laboratory
frame, Hu = H − u · P̂ + 1

2Mu2, where P̂ = ∫
B

p̂(x)d2r is the
total momentum, M = mN is the total mass and p̂(x) is the
momentum density operator at point x. The expectation value
for the momentum density in the presence of moving walls is
then given by the expression,

〈p̂(x)〉u = Tr[ρ̂p̂(x)], (D1)

= Tr[e−β(H−P̂·u+(mu2/2−µ)N)p̂(x)]

Tr(e−β(H−P̂·u+(mu2/2−µ)N )
. (D2)

Expanding this expression to first order in u yields

〈p̂(x)〉u = 〈p̂(x)〉 + β[〈p̂(x)P̂ · u〉 − 〈p̂(x)〉 〈P̂ · u〉], (D3)

where all the expectation values on the right hand side are now
taken in the equilibrium ensemble with the walls at rest. Since
〈p̂(x)〉 = 0 in our equilibrium ensemble, this simplifies to

〈p̂(x)〉u = β〈p̂(x)P̂〉 · u, (D4)

= β

∫
B

d2x′〈p̂(x)p̂(x′)〉 · u, (D5)

where p̂(x)p̂(x′) is a dyad [i.e., a rank-two tensor; the outer
product of p̂(x) and p̂(x′)].

To make further progress, we wish to take the limit as the
system gets very large (write “B → ∞”). To this end, we first
consider some properties of the correlation functions in the
infinite system. The infinite system is homogeneous, which
implies that 〈p̂(x)p̂(x′)〉∞ = 〈p̂(x + r)p̂(x′ + r)〉∞ for any r,
where 〈·〉∞ indicates an average in the infinite system. As a
consequence, we may express the correlations—in the infinite
system—in terms of the Fourier transform in the relative
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coordinate x′ − x:

〈p̂(x)p̂(x′)〉∞ = 〈p̂(0)p̂(x′ − x)〉∞, (D6)

= 1

(2π )2

∫
d2keik·(x′−x)χ (k), (D7)

where all the important features of the correlations are now
captured by the tensor,

χ (k) =
∫

d2r e−ik·r 〈p̂(0)p̂(r)〉∞ . (D8)

Because of the isotropy of the fluid in the infinite system,
χ (k) obeys the transformation law χ (Ok) = O−1χ (k)O for
any 2 × 2 orthogonal matrix O. This implies that χ may be
decomposed into the sum of longitudinal and transverse parts:

χ (k) = k̃k̃χl(k) + (I − k̃k̃)χt (k), (D9)

where k̃ = k/k, k = ‖k‖ and I is the identity. The transverse
and longitudinal functions χt and χl are scalars, which depend
only on the length k.

We now return our attention to the finite system. If the
finite box B is large then the momentum correlations in the
bulk will be very similar to the values for the infinite system.
Therefore, when x and x′ are far from the boundaries, we may
approximate

〈p̂(x)p̂(x′)〉 ≈ 〈p̂(x)p̂(x′)〉∞ (D10)

= 1

(2π )2

∫
d2keik·(x′−x)χ (k), (D11)

which in combination with Eq. (D5) yields

〈p̂(x)〉u ≈ β

∫
B

d2x′ 1

(2π )2

∫
d2k eik·(x′−x)χ (k) · u (D12)

= β

∫
d2k�B(k)eik·xχ (k) · u. (D13)

Here we have defined the nascent δ function �B(k) : =
1

(2π)2

∫
B

d2x′eik·x′
, which has the property �B(k) → δ(k) as

B → ∞.
We are now in a position to carry out the limiting procedure

to increase the box size to infinity. However, care must be taken
because the simple expression limB→∞ 〈p̂(x)〉u is not well
defined without further qualification of the limiting process
B → ∞.

To resolve this subtlety we must insert a final vital piece
of physical reasoning. Let us assume for simplicity that u is
directed along the x direction, and the box B is aligned with
the x and y axes with dimensions Lx×Ly . As shown in Fig. 11,
there are two possibilities for taking the limits, representing
different physical situations.

On the one hand [Fig. 11(b)], we may take the limit Lx →
∞ first, which gives us an infinitely long channel in which
superfluid can remain stationary while only the normal fraction
moves with the walls in the x direction. We have

ρnu = lim
Ly→∞

lim
Lx→∞

〈p̂(x)〉u (D14)

= lim
Ly→∞

lim
Lx→∞

β

∫
d2k�B(k)eik·xχ (k) · u (D15)

= β lim
ky→0

lim
kx→0

χ (k) · u, (D16)

where we use the fact that �B(k) can be decomposed into
the product �Lx

(kx)�Ly
(ky) with �L(k) → δ(k) as L → ∞.

Employing the decomposition of χ given in Eq. (D9) allows
the density of the normal fraction to be related to the transverse
component of χ evaluated at zero:

ρn = β lim
k→0

χt (k) = βχt (0). (D17)

On the other hand [Fig. 11(c)], we may take the limit Ly →
∞ first, resulting in an infinitely long channel—with velocity
perpendicular to the walls—in which the entire body of the
fluid must move regardless of the superfluidity. In a similar way
to the previous paragraph, nu = β limkx→0 limky→0 χ (k) · u,
and making use of the decomposition in Eq. (D9), the
total density is related to the longitudinal component of the
correlations:

n = β lim
k→0

χl(k) = βχl(0). (D18)

With these expressions, the normal fraction fn may finally
be expressed directly as

fn = ρn/n = lim
k→0

χt (k)/ lim
k→0

χl(k), (D19)

while the superfluid fraction is fs = 1 − fn. Thus, we have
expressed the superfluid and normal fractions in terms of a
correlation function that can be directly computed from our
simulation results.

2. Numerical procedure

To determine the superfluid fraction for our system, we
need to estimate the tensor of momentum density correlations
χ from the simulation results. For our finite system constrained
to a periodic simulation box, we may compute the momentum
correlations only at discrete grid points. The discrete analog
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FIG. 12. (Color online) Example fitting and extrapolation to k =
0 for the transverse and longitudinal components of the momentum
density autocorrelation tensor, χ . The apparent functional form for χt

and χl changes with temperature—particularly near the transition—
which along with the sampling noise makes them difficult to fit
reliably. The data shown corresponds to a temperature slightly below
the transition.
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of Eq. (D8) leads to the expression,

χ (k) ∝ 〈pkp−k〉 , (D20)

where the constant of proportionality is not important to the
final result, and pk are the discrete Fourier coefficients of p(x)
over our simulation box.

The momentum density operator is given by

p̂(x) = ih̄

2
{[∇ψ̂†(x)]ψ̂(x) − ψ̂†(x)∇ψ̂(x)}, (D21)

which may be derived by considering the continuity equation
for the number density, 〈ψ̂†(x)ψ̂(x)〉. For a given classical field
Eq. (10), the Fourier coefficients of p may be written as

pk = h̄

2
√

AB

∑
k′

(2k′ + k)c∗
k′ck+k′ , (D22)

where AB is the area of the system. Computing a value for
all pk at each time step, we then evaluate χ (k) via the usual
ergodic averaging procedure using Eq. (D20).

Having evaluated χ (k), we are left with performing the
decomposition into longitudinal and transverse parts. For this,

simply note that Eq. (D9) implies χl(k) = k̃ · χ (k) · k̃, and
χt (k) = w̃ · χ (k) · w̃, where w̃ is a unit vector perpendicular
to k̃.

Values for χt and χl may be collected for all angles as
a function of k, and a fitting procedure used to perform the
extrapolation k → 0; this procedure is illustrated in Fig. 12.
At low temperatures, the extrapolation is quite reliable, but
becomes more difficult near the transition where sampling
noise increases and χt (k) changes rapidly near k = 0. Without
a known functional form, we settled for a quadratic weighted
least-squares fit of ln(χt ) and ln(χl) versus k. A weighting
of 1/k was used to counteract the fact that the density of
samples of χ versus k scales proportionally with k due to the
square grid on which χ (k) is evaluated. The logarithm was
used to improve the fits of χt very near the transition where it
varies nonquadratically near k = 0. The fitting procedure and
extrapolation to k = 0 generally produces reasonable results,
but is somewhat sensitive to numerical noise. For this reason,
the computed superfluid fraction at high temperatures is not
exactly zero (see Fig. 2).
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