9,180 research outputs found

    Benchmark calculations for elastic fermion-dimer scattering

    Get PDF
    We present continuum and lattice calculations for elastic scattering between a fermion and a bound dimer in the shallow binding limit. For the continuum calculation we use the Skorniakov-Ter-Martirosian (STM) integral equation to determine the scattering length and effective range parameter to high precision. For the lattice calculation we use the finite-volume method of L\"uscher. We take into account topological finite-volume corrections to the dimer binding energy which depend on the momentum of the dimer. After subtracting these effects, we find from the lattice calculation kappa a_fd = 1.174(9) and kappa r_fd = -0.029(13). These results agree well with the continuum values kappa a_fd = 1.17907(1) and kappa r_fd = -0.0383(3) obtained from the STM equation. We discuss applications to cold atomic Fermi gases, deuteron-neutron scattering in the spin-quartet channel, and lattice calculations of scattering for nuclei and hadronic molecules at finite volume.Comment: 16 pages, 5 figure

    Effects of diamagnetic levitation on bacterial growth in liquid

    Get PDF
    Diamagnetic levitation is a technique that uses a strong, spatially-varying magnetic field to levitate diamagnetic materials, such as water and biological cells. This technique has the potential to simulate aspects of weightlessness, on the Earth. In common with all ground-based techniques to simulate weightlessness, however, there are effects introduced by diamagnetic levitation that are not present in space. Since there have been few studies that systematically investigate these differences, diamagnetic levitation is not yet being fully exploited. For the first time, we critically assess the effect of diamagnetic levitation on a bacterial culture in liquid. We used a superconducting magnet to levitate growing bacterial cultures for up to 18 hours, in a series of experiments to determine the effect of diamagnetic levitation on all phases of the bacterial growth cycle. We find that diamagnetic levitation increases the rate of population growth in a liquid culture. The speed of sedimentation of the bacterial cells to the bottom of the container is considerably reduced. Further experiments and microarray gene analysis show that the growth enhancement is due to greater oxygen availability in the magnetically levitated sample. We demonstrate that the magnetic field that levitates the cells also induces convective stirring in the liquid, an effect not present in microgravity. We present a simple theoretical model, showing how the paramagnetic force on dissolved oxygen can cause the liquid to become unstable to convection when the consumption of oxygen by the bacteria generates an oxygen concentration gradient. We propose that this convection enhances oxygen availability by transporting oxygen around the sample. Since convection is absent in space, these results are of significant importance and timeliness to researchers considering using diamagnetic levitation to explore weightless effects on living organisms and a broad range of other topics in the physical and life sciences

    The Post-Eruptive Evolution of a Coronal Dimming

    Full text link
    We discuss the post-eruptive evolution of a "coronal dimming" based on observations of the EUV corona from the Solar and Heliospheric Observatory and the Transition Region and Coronal Explorer. This discussion highlights the roles played by magnetoconvection-driven magnetic reconnection and the global magnetic environment of the plasma in the "filling" and apparent motion of the region following the eruption of a coronal mass ejection (CME). A crucial element in our understanding of the dimming region evolution is developed by monitoring the disappearance and reappearance of bright TRACE "moss" around the active region giving rise to the CME. We interpret the change in the TRACE moss as a proxy of the changing coronal magnetic field topology behind the CME front. We infer that the change in global magnetic topology also results in a shift of energy balance in the process responsible for the production of the moss emission while the coronal magnetic topology evolves from closed, to open and back to closed again because, following the eruption, the moss reforms around the active region in almost exactly its pre-event configuration. As a result of the moss evolution, combining our discussion with recent spectroscopic results of an equatorial coronal hole, we suggest that the interchangeable use of the term "transient coronal hole" to describe a coronal dimming is more than just a simple coincidence.Comment: In Press ApJ [May 2007] - 15 pages, 5 figures, 7 movies that are available upon request [contact author

    Spectral decomposition for the Dirac system associated to the DSII equation

    Full text link
    A new (scalar) spectral decomposition is found for the Dirac system in two dimensions associated to the focusing Davey--Stewartson II (DSII) equation. Discrete spectrum in the spectral problem corresponds to eigenvalues embedded into a two-dimensional essential spectrum. We show that these embedded eigenvalues are structurally unstable under small variations of the initial data. This instability leads to the decay of localized initial data into continuous wave packets prescribed by the nonlinear dynamics of the DSII equation
    • 

    corecore