71 research outputs found

    Adiabatic Shear Banding in Nickel and Nickel-Based Superalloys: A Review

    Get PDF
    This review paper discusses the formation and propagation of adiabatic shear bands in nickel-based superalloys. The formation of adiabatic shear bands (ASBs) is a unique dynamic phenomenon that typically precedes catastrophic, unpredicted failure in many metals under impact or ballistic loading. ASBs are thin regions that undergo substantial plastic shear strain and material softening due to the thermo-mechanical instability induced by the competitive work hardening and thermal softening processes. Dynamic recrystallization of the material’s microstructure in the shear region can occur and encourages shear localization and the formation of ASBs. Phase transformations are also often seen in ASBs of ferrous metals due to the elevated temperatures reached in the narrow shear region. ASBs ultimately lead to the local degradation of material properties within a narrow band wherein micro-voids can more easily nucleate and grow compared to the surrounding material. As the micro-voids grow, they will eventually coalesce leading to crack formation and eventual fracture. For elevated temperature applications, such as in the aerospace industry, nickel-based superalloys are used due to their high strength. Understanding the formation conditions of ASBs in nickel-based superalloys is also beneficial in extending the life of machining tools. The main goal of the review is to identify the formation mechanisms of ASBs, the microstructural evolutions associated with ASBs in nickel-based alloys, and their consequent effect on material properties. Under a shear strain rate of 80,000 s−1, the critical shear strain at which an ASB forms is between 2.2 and 3.2 for aged Inconel 718 and 4.5 for solution-treated Inconel 718. Shear band widths are reported to range between 2 and 65 microns for nickel-based superalloys. The shear bands widths are narrower in samples that are aged compared to samples in the annealed or solution treated condition

    Expression of a Novel Chimeric Truncated t-PA in CHO Cells Based on in Silico Experiments

    Get PDF
    Tissue plasminogen activator (t-PA) is one of the fibrin-specific serine proteases that play a crucial role in the fibrinolytic system. The rapid clearance of the drug from the circulation, caused by its active uptake in the liver, has lead to complicated clinical applications. Different forms of plasminogen activators have been developed to treat thrombotic disease. Deletion of the first three domains of t-PA by gene manipulation techniques has shown a significant increase in its plasma half life. In order to compensate the disadvantage of higher bleeding risk, a novel chimeric truncated form of t-PA with 394 amino acids and more fibrin affinity compared to the truncated form was designed to be expressed in Chinese Hamster Ovarian (CHO) cells. The recombinant chimeric plasminogen activator consists of kringle 2 and serine protease (K2S) domains of t-PA, namely GHRP-SYQ-K2S. The level of expression was found to be 752 IU/ml with 566,917 IU/mg specific activity, based on amidolytic activity. The fibrin binding of this novel chimeric truncated t-PA was 86% of the full length t-PA at a fibrinogen concentration of 0.2 mg/ml. This could be a promising approach with more desirable pharmacodynamic properties compared to existing commercial forms

    Human Tissue Plasminogen Activator Expression in Escherichia coli using Cytoplasmic and Periplasmic Cumulative Power

    Get PDF
    Abstract Tissue plasminogen activator (tPA) is a serine protease, which is composed of five distinct structural domains with 17 disulfide bonds, representing a model of high-disulfide proteins in human body. One of the most important limitations for high yield heterologous protein production in Escherichia coli (E. coli) is the expression of complex proteins with multiple disulfide bridges. In this study the combination of two distinct strategies, manipulated cytoplasm and native periplasm, was applied to produce the functional full length tPA enzyme in E. coli. Using a PelB signal peptide sequence at 5' site of tPA gene, the expression cassette was prepared and subsequently was transformed into a strain with manipulated oxidizing cytoplasm. Then the induction was made to express the protein of interest. The SDS-PAGE analysis and gelatin hydrolysis confirmed the successful expression of functional tPA. The results of this study showed that complex proteins can be produced in E. coli using the cumulative power of both cytoplasm and periplasm
    corecore