209 research outputs found

    A Simple Modularity Measure for Search Spaces based on Information Theory

    Get PDF
    Within the context of Artificial Life the question about the role of modularity has turned out to be crucial, especially with regard to the problem of evolvability. In order to be able to observe the development of modular structure, appropriate modularity measures are important. We introduce a continuous measure based on information theory which can characterize the coupling among subsystems in a search problem. In order to illustrate the concepts developed, they are applied to a very simple and intuitive set of combinatorial problems similar to scenarios used in the seminal work by Simon (1969). It is shown that this measure is closely related to the classification of search problems in terms of Separability, Non-Decomposability and Modular Interdependency as introduced in (Watson and Pollack, 2005)

    Tetrahedrites: Prospective Novel Thermoelectric Materials

    Get PDF
    Since their discovery in 1845, tetrahedrites, a class of minerals composed of relatively earth‐abundant and nontoxic elements, have been extensively studied in mineralogy and geology. Despite a large body of publications on this subject, their transport properties had not been explored in detail. The discovery of their interesting high‐temperature thermoelectric properties and peculiar thermal transport has led to numerous experimental and theoretical studies over the last 4 years with the aim of better understanding the relationships between the crystal, electronic, and thermal properties. Tetrahedrites provide a remarkable example of anharmonic system giving rise to a temperature dependence of the lattice thermal conductivity that mirrors that of amorphous compounds. Here, we review the progress of research on the transport properties of tetrahedrites, highlighting the main experimental and theoretical results that have been obtained so far and the important issues and questions that remain to be investigated

    Influence de la teneur en ciment sur les propriétés thermomécaniques des blocs d’argile comprimée et stabilisée

    Get PDF
    Ce travail vise à déterminer la résistance à la compression et la conductivité thermique des blocs à base d’argile comprimée et stabilisée au ciment d’une part et à étudier la variation de ces propriétés en fonction de la teneur en ciment d’autre part. Les mesures réalisées indiquent que la résistance des blocs sans ciment est de 3,7 MPa par « voie sèche » pour une conductivité thermique de 0,91 Wm-1K-1 (déterminée à l’aide d’un fluxmètre). L’incorporation de ciment entraine une variation de ces deux propriétés. Ainsi on note d’abord une baisse de la résistance suivie d’une augmentation au delà de 4% de ciment. Toutefois la conductivité thermique des blocs ayant les teneurs en ciment les plus importantes reste proche de celle des blocs sans ciment.Mots-clés: bloc d’argile, ciment portland, stabilisation, résistance en compression, conductivité thermique. Influence of cement content on the thermomechanical properties of compressed and stabilized clay blocks This work aims to determine the compressive strength and the thermal conductivity of clay compressed blocks and stabilized with cement and to study the influence of the cement ratio on these characteristics of the blocks. The resistance of blocks without cement is (determined at dry state) is 3.7 MPa and measurements made with a fluxmeter show that the thermal conductivity of these blocks is 0,91 Wm-1 K-1. The results show also that the thermal conductivity and the compressive strength of the blocks vary according to the cement ratio. However the thermal conductivity of the blocks with high cement ratio is close to that of the blocks without cement.Keywords: clay blocks, Portland cement, stabilization, compressive strength, thermal conductivity

    Constructing a Large Variety of Dirac-Cone Materials in the Bi1x{}_{1-x}Sbx{}_{x} Thin Film System

    Full text link
    We theoretically predict that a large variety of Dirac-cone materials can be constructed in Bi1x{}_{1-x}Sbx{}_{x} thin films, and we here show how to construct single-, bi- and tri- Dirac-cone materials with various amounts of wave vector anisotropy. These different types of Dirac cones can be of special interest to electronic devices design, quantum electrodynamics and other fields

    Reduced phase space of heat-carrying acoustic phonons in single-crystalline InTe

    Get PDF
    Chalcogenide semiconductors and semimetals are a fertile class of efficient thermoelectric materials, which, in most cases, exhibit very low lattice thermal conductivity κph despite lacking a complex crystal structure such as the tetragonal binary compound InTe. Our measurements of κph(T) in single-crystalline InTe along the c axis show that κph exhibits a smooth temperature dependence upon cooling to about 50 K, the temperature below which a strong rise typical for dielectric compounds is observed. Using a combination of first-principles calculations, inelastic neutron scattering (INS), and low-temperature specific heat and transport properties measurements on single-crystalline InTe, we show that the phonon spectrum exhibits well-defined acoustic modes, the energy dispersions of which are constrained to low energies due to distributions of dispersionless, optical modes, which are responsible for a broad double peak structure in the low-temperature specific heat. The latter are assigned to the dynamics of In+ cations in tunnels formed by edge-sharing (In3+Te42−)− tetrahedra chains, the atomic thermal displacement parameters of which, probed as a function of temperature by means of single-crystal x-ray diffraction, suggest the existence of a complex energy potential. Indeed, the In+-weighted optical modes are not observed by INS, which is ascribed to the anharmonic broadening of their energy profiles. While the low κph value of 1.2Wm−1K−1 at 300 K originates from the limited energy range available for acoustic phonons, we show that the underlying mechanism is specific to InTe and argue that it is likely related to the presence of local disorder induced by the In+ sit

    Prediction of Anisotropic Single-Dirac-Cones in Bi1x{}_{1-x}Sbx{}_{x} Thin Films

    Full text link
    The electronic band structures of Bi1x{}_{1-x}Sbx{}_{x} thin films can be varied as a function of temperature, pressure, stoichiometry, film thickness and growth orientation. We here show how different anisotropic single-Dirac-cones can be constructed in a Bi1x{}_{1-x}Sbx{}_{x} thin film for different applications or research purposes. For predicting anisotropic single-Dirac-cones, we have developed an iterative-two-dimensional-two-band model to get a consistent inverse-effective-mass-tensor and band-gap, which can be used in a general two-dimensional system that has a non-parabolic dispersion relation as in a Bi1x{}_{1-x}Sbx{}_{x} thin film system
    corecore