14 research outputs found

    The performance of human periodontal ligament mesenchymal stem cells on xenogenic biomaterials

    Get PDF
    Mesenchymal stem cells from periodontal ligament (PDL-MSCs) hold great promise for bone regeneration. Most studies regarding the osteogenic differentiation of stem cells from periodontal tissue suggest that PDL cells may have many osteoblast-like properties, including the ability to form calcified nodules in vitro. This study investigated the morphological and histochemistry aspects of human PDL-MSCs, induced for osteogenic differentiation and seeded on a xenogenic porcine bone substitute in vitro, at different times of incubation. This biomaterial seems physically identical to human bone, and it has been reported to be osteoconductive. Our results indicated that the cells had a high affinity for the three-dimensional biomaterials; in fact, cellular proliferation and colonization was evident, and after 21 days the adherent cells started to detach themselves from the substrate, and at 30 days of incubation in differentiation medium, the cells completely lost the adhesion to the Petri's disk, englobing all bioparticles. In conclusion, the in vitro behaviour of PDL-MSCs and their relationship with three-dimensional scaffold biomaterials encourage in vivo investigations for their use in dental tissue regeneration

    Overview of FTU results

    No full text
    New FTU ohmic discharges with a liquid lithium limiter at I(P) = 0.7-0.75 MA, B(T) = 7 T and n(e0) >= 5 x 10(20) m(-3) confirm the spontaneous transition to an enhanced confinement regime, 1.3-1.4 times ITER-97-L, when the density peaking factor is above a threshold value of 1.7-1.8. The improved confinement derives from a reduction of electron thermal conductivity (chi(e)) as density increases, while ion thermal conductivity (chi(i)) remains close to neoclassical values. Linear microstability reveals the importance of lithium in triggering a turbulent inward flux for electrons and deuterium by changing the growth rates and phase of the ion-driven turbulence, while lithium flux is always directed outwards. A particle diffusion coefficient, D similar to 0.07 m(2) s(-1), and an inward pinch velocity, V similar to 0.27 ms(-1), in qualitative agreement with Bohm-gyro-Bohm predictions are inferred in pellet fuelled lithized discharges. Radio frequency heated plasmas benefit from cleaner plasmas with edge optimized conditions. Lower hybrid waves penetration and current drive effects are clearly demonstrated at and above ITER densities thanks to a good control of edge parameters obtained by plasma operations with the external poloidal limiter, lithized walls and pellet fuelling. The electron cyclotron (EC) heating system is extensively exploited in FTU for contributing to ITER-relevant issues such as MHD control: sawtooth crash is actively controlled and density limit disruptions are avoided by central and off-axis deposition of 0.3 MW of EC power at 140 GHz. Fourier analysis shows that the density drop and the temperature rise, stimulated by modulated EC power in low collisionality plasmas are synchronous, implying that the heating method is the common cause of both the electron heating and the density drop. Perpendicularly injected electron cyclotron resonance heating is demonstrated to be more efficient than the obliquely injected one, reducing the minimum electric field required at breakdown by a factor of 3. Theoretical activity further develops the model to interpret high-frequency fishbones on FTU and other experiments as well as to characterize beta-induced Alfven eigenmodes induced by magnetic islands in ohmic discharges. The theoretical framework of the general fishbone-like dispersion relation is used for implementing an extended version of the HMGC hybrid MHD gyrokinetic code. The upgraded version of HMGC will be able to handle fully compressible non-linear gyrokinetic equations and 3D MHD

    Calibration and testing of the Planck-LFI QM instrument

    No full text
    In this paper we present the test results of the qualification model (QM) of the LFI instrument, which is being developed as part of the ESA Planck satellite. In particular we discuss the calibration plan which has defined the main requirements of the radiometric tests and of the experimental setups. Then we describe how these requirements have been implemented in the custom-developed cryo-facilities and present the main results. We conclude with a discussion of the lessons learned for the testing of the LFI Flight Model (FM)
    corecore