525 research outputs found

    Clinical efficacy and safety of edaravone therapy in acute cerebral haemorrhage

    Get PDF
    Purpose: To evaluate the clinical efficacy and safety of edaravone in the treatment of acute cerebral haemorrhage (ACH).Methods: This study recruited 120 patients who developed ACH. The patients were divided into control and treatment groups with 60 patients per group. The control group underwent conventional treatment and the treatment group also received intravenous edaravone. The volumes of cerebral edema and cerebral hematoma, high-sensitivity C-reactive protein (hs-CRP) and interleukin-6 (IL-6) levels, and Chinese Stroke Scale (CSS) score before and after treatment were compared between the two groups.Results: The respective cerebral edema volumes of the control and treatment groups decreased from 20.99 ± 12.09 and 21.80 ± 12.01 mL on day 0 to 11.23 ± 6.34 and 12.11 ± 5.98 mL at day 7 and 4.69 ± 4.03 and 4.64 ± 3.9 mL on day 14 (P < 0.05). The respective cerebral hematoma volumes of the control and treatment groups decreased from 18.98 ± 12.04 and 18.97 ± 12.07 mL on day 0 to 12.34 ± 6.57 and 11.89 ± 4.01 mL at day 7 and 9.49 ± 3.95 and 9.52 ± 3.96 mL on day 14. Compared with pretreatment, hs-CRP and IL-6 levels and CSS score of the two groups decreased significantly following treatment (p < 0.05); the differences in the cerebral edema and hematoma volumes of the two groups on days 7 and 14 were not significant (p > 0.05). The hs-CRP and IL-6 levels and CSS scores of the treatment group decreased appreciably (p < 0.05), while the incidence of adverse reactions in the treatment and control groups was 16.67 and 13.33 %, respectively, but the difference was not significant (p > 0.05).Conclusion: Edaravone shows remarkable clinical efficacy and safety with no obvious adverse reactions in the treatment of ACH. Therefore, its use is recommended.Keywords: Cerebral haemorrhage, Edaravone, Cerebral edema, C-reactive protein, Interleukin-6, Chinese Stroke Scal

    Targeting retinal dopaminergic neurons in tyrosine hydroxylase-driven green fluorescent protein transgenic zebrafish

    Get PDF
    Purpose: Dopamine plays key roles in a variety of basic functions in the central nervous system. To study developmental and functional roles of dopaminergic cells in zebrafish, we have generated a transgenic line of zebrafish expressing green fluorescent protein (GFP) under the control of the tyrosine hydroxylase (th1) promoter. Methods: A 12 kb gene fragment that contains the th1 promoter was isolated and ligated to the MmGFP coding sequence, linearized, microinjected into 1−2 cell stage embryos and the founders crossed with wild−type fish to screen for transgenic lines. Tg(−12th:MmGFP) embryos were visualized under fluorescence microscopy for GFP expression during development. Confocal microscopy was used to visualize GFP−labeled cells in the living whole mount retina and immunostained vertical sections of adult zebrafish retina. Single−cell reverse transcription polymerase chain reaction (RT−PCR) was performed on individual GFP+ cells collected from dispersed retinal cell cultures for th1 and dopamine transporter (dat). Loose−patch recordings of spike activity of GFP+ neurons were made in isolated whole mount retinas. Results: th1 promoter−driven GFP exhibited robust expression in the brain and retina during zebrafish development. In juvenile and adult fish retinas, GFP was expressed in cells located in the inner nuclear layer. Immunocytochemistry with antibodies for GFP and TH showed that 29±2% of GFP−labeled cells also expressed TH. Two subpopulations of GFP−labeled cells were identified by fluorescent microscopy: bright GFP−expressing cells and dim GFP−expressing cells. Seminested single−cell RT−PCR showed that 71% of dim GFP−expressing cells expressed both th and dat mRNA. Loose−patch voltage−clamp recording from dim GFP−labeled cells in retinal whole mounts revealed that many of these dopaminergic neurons are spontaneously active in darkness. Conclusions: Although this Tg(−12th:MmGFP) line is not a completely specific reporter for dopaminergic neurons, using relative GFP intensity we are able to enrich for the selection of retinal dopaminergic cells in vitro and in situ in molecular and electrophysiological experiments. This transgenic line provides a useful tool for studying retinal dopaminergic cells in the zebrafish

    Intraretinal signaling by ganglion cell photoreceptors to dopaminergic amacrine neurons

    Get PDF
    Retinal dopaminergic amacrine neurons (DA neurons) play a central role in reconfiguring retinal function according to prevailing illumination conditions, yet the mechanisms by which light regulates their activity are poorly understood. We investigated the means by which sustained light responses are evoked in DA neurons. Sustained light responses were driven by cationic currents and persisted in vitro and in vivo in the presence of L-AP4, a blocker of retinal ON-bipolar cells. Several characteristics of these L-AP4-resistant light responses suggested that they were driven by melanopsin-expressing intrinsically photosensitive retinal ganglion cells (ipRGCs), including long latencies, marked poststimulus persistence, and a peak spectral sensitivity of 478 nm. Furthermore, sustained DA neuron light responses, but not transient DA neuron responses, persisted in rod/cone degenerate retinas, in which ipRGCs account for virtually all remaining retinal phototransduction. Thus, ganglion-cell photoreceptors provide excitatory drive to DA neurons, most likely by way of the coramification of their dendrites and the processes of DA neurons in the inner plexiform layer. This unprecedented centrifugal outflow of ganglion-cell signals within the retina provides a novel basis for the restructuring of retinal circuits by light

    Comprehensive Analysis of miRNA-mRNA-lncRNA Networks in Non-Smoking and Smoking Patients with Chronic Obstructive Pulmonary Disease

    Get PDF
    Background/Aims: Chronic obstructive pulmonary disease (COPD) is a major cause of morbidity and mortality worldwide. This study aimed to identify overlapping or diverging dysregulated genes, lncRNAs, miRNAs and signaling pathways in smoking and non-smoking chronic obstructive pulmonary disease (COPD). Methods: Compared to normal controls, we identified the shared and divergent differentially expressed mRNAs (DEmRNAs), miRNAs (DEmiRNAs) and lncRNAs (DElncRNAs) in smoking and non-smoking COPD by RNA-sequencing and bioinformatics analysis. Functional annotation of DEmRNAs were performed. Both cis and trans-target DEmRNAs of DElncRNAs were identified. The target DEmRNAs of DEmiRNAs were identified as well. The DEmiRNA-DEmRNA-DElncRNA interaction network was constructed. QRT-PCR was performed to validat the selected DEmiRNAs, DEmRNA and DElncRNAs in COPD. Results: Compared to normal control, 1234 DEmRNAs, 96 DElncRNAs and 151 DEmiRNAs were identified in non-smoking patients with COPD; 670 DEmRNAs, 44 DElncRNAs and 63 DEmiRNAs were identified in smoking patients with COPD. Leukocyte transendothelial migration and pathways in cancer were significantly enriched pathways in non-smoking and smoking COPD, respectively. MiR-122-5p-A2M-LINC00987/A2M-AS1/ linc0061 interactions might play key roles in COPD irrespective with the smoking status. Let-7-ADRB1-HLA-DQB1-AS1 might play a key role in the pathogenesis of smoking COPD while miR-218-5p/miR15a-RORA-LOC101928100/LINC00861 and miR-218-5p/miR15a-TGFβ3-RORA-AS1 interactions might involve with non-smoking COPD. Conclusion: We identified the shared and diverging genes, lncRNAs, miRNAs and their interactions and pathways in smoking and non-smoking COPD which provided clues for understanding the mechanism and developing novel diagnostic and therapeutic strategies for COPD
    • …
    corecore