184 research outputs found

    Uniqueness of Ground States for Short-Range Spin Glasses in the Half-Plane

    Full text link
    We consider the Edwards-Anderson Ising spin glass model on the half-plane Z×Z+Z \times Z^+ with zero external field and a wide range of choices, including mean zero Gaussian, for the common distribution of the collection J of i.i.d. nearest neighbor couplings. The infinite-volume joint distribution K(J,α)K(J,\alpha) of couplings J and ground state pairs α\alpha with periodic (respectively, free) boundary conditions in the horizontal (respectively, vertical) coordinate is shown to exist without need for subsequence limits. Our main result is that for almost every J, the conditional distribution K(α∣J)K(\alpha|J) is supported on a single ground state pair.Comment: 20 pages, 3 figure

    Bordetella pertussis Whole Cell Immunization, Unlike Acellular Immunization, Mimics Naïve Infection by Driving Hematopoietic Stem and Progenitor Cell Expansion in Mice

    Get PDF
    Hematopoietic stem and progenitor cell (HSPC) compartments are altered to direct immune responses to infection. Their roles during immunization are not well-described. To elucidate mechanisms for waning immunity following immunization with acellular vaccines (ACVs) against Bordetella pertussis (Bp), we tested the hypothesis that immunization with Bp ACVs and whole cell vaccines (WCVs) differ in directing the HSPC characteristics and immune cell development patterns that ultimately contribute to the types and quantities of cells produced to fight infection. Our data demonstrate that compared to control and ACV-immunized CD-1 mice, immunization with an efficacious WCV drives expansion of hematopoietic multipotent progenitor cells (MPPs), increases circulating white blood cells (WBCs), and alters the size and composition of lymphoid organs. In addition to MPPs, common lymphoid progenitor (CLP) proportions increase in the bone marrow of WCV-immunized mice, while B220+ cell proportions decrease. Upon subsequent infection, increases in maturing B cell populations are striking in WCV-immunized mice. RNAseq analyses of HSPCs revealed that WCV and ACV-immunized mice vastly differ in developing VDJ gene segment diversity. Moreover, gene set enrichment analyses demonstrate WCV-immunized mice exhibit unique gene signatures that suggest roles for interferon (IFN) induced gene expression. Also observed in naïve infection, these IFN stimulated gene (ISG) signatures point toward roles in cell survival, cell cycle, autophagy, and antigen processing and presentation. Taken together, these findings underscore the impact of vaccine antigen and adjuvant content on skewing and/or priming HSPC populations for immune response

    Expanding Utilization of Home Dialysis: An Action Agenda From the First International Home Dialysis Roundtable

    Get PDF
    In a groundbreaking meeting, leading global kidney disease organizations came together in the fall of 2020 as an International Home Dialysis Roundtable (IHDR) to address strategies to increase access to and uptake of home dialysis, both peritoneal dialysis and home hemodialysis. This challenge has become urgent in the wake of the coronavirus disease 2019 (COVID-19) pandemic, during which patients with advanced kidney disease, who are more susceptible to viral infections and severe complications, must be able to safely physically distance at home. To boost access to home dialysis on a global scale, IHDR members committed to collaborate, through the COVID-19 public health emergency and beyond, to promote uptake of home dialysis on a broad scale. Their commitments included increasing the reach and influence of key stakeholders with policy makers, building a cooperative of advocates and champions for home dialysis, working together to increase patient engagement and empowerment, and sharing intelligence about policy, education, and other programs so that such efforts can be operationalized globally. In the spirit of international cooperation, IHDR members agreed to document, amplify, and replicate established efforts shown to improve access to home dialysis and support new policies that facilitate access through procedures, innovation, and reimbursement

    Bordetella pertussis Whole Cell Immunization, Unlike Acellular Immunization, Mimics Naïve Infection by Driving Hematopoietic Stem and Progenitor Cell Expansion in Mice

    Get PDF
    Hematopoietic stem and progenitor cell (HSPC) compartments are altered to direct immune responses to infection. Their roles during immunization are not well-described. To elucidate mechanisms for waning immunity following immunization with acellular vaccines (ACVs) against Bordetella pertussis (Bp), we tested the hypothesis that immunization with Bp ACVs and whole cell vaccines (WCVs) differ in directing the HSPC characteristics and immune cell development patterns that ultimately contribute to the types and quantities of cells produced to fight infection. Our data demonstrate that compared to control and ACV-immunized CD-1 mice, immunization with an efficacious WCV drives expansion of hematopoietic multipotent progenitor cells (MPPs), increases circulating white blood cells (WBCs), and alters the size and composition of lymphoid organs. In addition to MPPs, common lymphoid progenitor (CLP) proportions increase in the bone marrow of WCV-immunized mice, while B220+ cell proportions decrease. Upon subsequent infection, increases in maturing B cell populations are striking in WCV-immunized mice. RNAseq analyses of HSPCs revealed that WCV and ACV-immunized mice vastly differ in developing VDJ gene segment diversity. Moreover, gene set enrichment analyses demonstrate WCV-immunized mice exhibit unique gene signatures that suggest roles for interferon (IFN) induced gene expression. Also observed in naïve infection, these IFN stimulated gene (ISG) signatures point toward roles in cell survival, cell cycle, autophagy, and antigen processing and presentation. Taken together, these findings underscore the impact of vaccine antigen and adjuvant content on skewing and/or priming HSPC populations for immune response

    Ethnic Identity of Older Chinese in Canada

    Get PDF
    In Canada’s multicultural society, ethnic identity is important to the elderly and can influence areas such as access to services, health promotion and care. Often, the complex nature of ethnic identity is underestimated when looking at cultural groups. This study aims to: (a) validate the factor structure of a Chinese ethnic identity measure for older Chinese in Canada, (b) examine the level of ethnic identity of the participants, and (c) examine the correlates of ethnic identity in these older individuals. Using data from a large, national research project on the elderly Chinese in Canada, this study analyzed the results gathered from a total of 2,272 participants. Principal component analysis, maximum-likelihood confirmatory factor analysis, and multiple regression analysis were performed. The results indicated that ethnic identity of the older Chinese is a multi-dimensional construct made up of three factors: (a) culture related activities, (b) community ties, (c) linkage with country of origin, and (d) cultural identification. The findings have provided a better understanding of how ethnic identity can be measured among the aging Chinese population in Canada

    Participant recruitment and retention in a pilot program to prevent weight gain in low-income overweight and obese mothers

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Recruitment and retention are key functions for programs promoting nutrition and other lifestyle behavioral changes in low-income populations. This paper describes strategies for recruitment and retention and presents predictors of early (two-month post intervention) and late (eight-month post intervention) dropout (non retention) and overall retention among young, low-income overweight and obese mothers participating in a community-based randomized pilot trial called <it>Mothers In Motion</it>.</p> <p>Methods</p> <p>Low-income overweight and obese African American and white mothers ages 18 to 34 were recruited from the Special Supplemental Nutrition Program for Women, Infants, and Children in southern Michigan. Participants (n = 129) were randomly assigned to an intervention (n = 64) or control (n = 65) group according to a stratification procedure to equalize representation in two racial groups (African American and white) and three body mass index categories (25.0-29.9 kg/m<sup>2</sup>, 30.0-34.9 kg/m<sup>2</sup>, and 35.0-39.9 kg/m<sup>2</sup>). The 10-week theory-based culturally sensitive intervention focused on healthy eating, physical activity, and stress management messages that were delivered via an interactive DVD and reinforced by five peer-support group teleconferences. Forward stepwise multiple logistic regression was performed to examine whether dietary fat, fruit and vegetable intake behaviors, physical activity, perceived stress, positive and negative affect, depression, and race predicted dropout as data were collected two-month and eight-month after the active intervention phase.</p> <p>Results</p> <p>Trained personnel were successful in recruiting subjects. Increased level of depression was a predictor of early dropout (odds ratio = 1.04; 95% CI = 1.00, 1.08; p = 0.03). Greater stress predicted late dropout (odds ratio = 0.20; 95% CI = 0.00, 0.37; p = 0.01). Dietary fat, fruit, and vegetable intake behaviors, physical activity, positive and negative affect, and race were not associated with either early or late dropout. Less negative affect was a marginal predictor of participant retention (odds ratio = 0.57; 95% CI = 0.31, 1.03; p = 0.06).</p> <p>Conclusion</p> <p>Dropout rates in this study were higher for participants who reported higher levels of depression and stress.</p> <p>Trial registration</p> <p>Current Controlled Trials NCT00944060</p

    Reliability of goniometric measurements in children with cerebral palsy: A comparative analysis of universal goniometer and electronic inclinometer. A pilot study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Even though technological progress has provided us with more and more sophisticated equipment for making goniometric measurements, the most commonly used clinical tools are still the universal goniometer and, to a lesser extent, the inclinometer. There is, however, no published study so far that uses an inclinometer for measurements in children with cerebral palsy (CP). The objective of this study was two-fold: to independently assess the intra and inter-examiner reliability for measuring the hip abduction range of motion in children with CP using two different instruments, the universal two-axis goniometer and electronic inclinometer. A pool of 5 examiners with different levels of experience as paediatric physiotherapists participated. The study did not compare both instruments because the measurement procedure and the hip position were different for each.</p> <p>Methods</p> <p>A prospective, observational study of goniometery was carried out with 14 lower extremities of 7 children with spastic CP. The inclinometer study was carried out with 8 lower extremities of 4 children with spastic CP. This study was divided into two independent parts: a study of the reliability of the hip abduction range of motion measured with a universal goniometer (hip at 0° flexion) and with an electronic inclinometer (hip at 90° flexion). The Intraclass Correlation Coefficient (ICC) was calculated to analyse intra and inter-examiner agreement for each instrument.</p> <p>Results</p> <p>For the goniometer, the intra-examiner reliability was excellent (>0.80), while the inter-examiner reliability was low (0.375 and 0.475). For the inclinometer, both the intra-examiner (0.850-0.975) and inter-examiner reliability were excellent (0.965 and 0.979).</p> <p>Conclusions</p> <p>The inter-examiner reliability for goniometric measurement of hip abduction in children with CP was low, in keeping with other results found in previous publications. The inclinometer has proved to be a highly reliable tool for measuring the hip abduction range of motion in children with CP, which opens up new possibilities in this field, despite having some measurement limitations.</p

    The Gac-Rsm and SadB Signal Transduction Pathways Converge on AlgU to Downregulate Motility in Pseudomonas fluorescens

    Get PDF
    Flagella mediated motility in Pseudomonas fluorescens F113 is tightly regulated. We have previously shown that motility is repressed by the GacA/GacS system and by SadB through downregulation of the fleQ gene, encoding the master regulator of the synthesis of flagellar components, including the flagellin FliC. Here we show that both regulatory pathways converge in the regulation of transcription and possibly translation of the algU gene, which encodes a sigma factor. AlgU is required for multiple functions, including the expression of the amrZ gene which encodes a transcriptional repressor of fleQ. Gac regulation of algU occurs during exponential growth and is exerted through the RNA binding proteins RsmA and RsmE but not RsmI. RNA immunoprecipitation assays have shown that the RsmA protein binds to a polycistronic mRNA encoding algU, mucA, mucB and mucD, resulting in lower levels of algU. We propose a model for repression of the synthesis of the flagellar apparatus linking extracellular and intracellular signalling with the levels of AlgU and a new physiological role for the Gac system in the downregulation of flagella biosynthesis during exponential growth

    Repeatability of Corticospinal and Spinal Measures during Lengthening and Shortening Contractions in the Human Tibialis Anterior Muscle

    Get PDF
    Elements of the human central nervous system (CNS) constantly oscillate. In addition, there are also methodological factors and changes in muscle mechanics during dynamic muscle contractions that threaten the stability and consistency of transcranial magnetic stimulation (TMS) and perpherial nerve stimulation (PNS) measures

    Dynamic Regulation of Myosin Light Chain Phosphorylation by Rho-kinase

    Get PDF
    Myosin light chain (MLC) phosphorylation plays important roles in various cellular functions such as cellular morphogenesis, motility, and smooth muscle contraction. MLC phosphorylation is determined by the balance between activities of Rho-associated kinase (Rho-kinase) and myosin phosphatase. An impaired balance between Rho-kinase and myosin phosphatase activities induces the abnormal sustained phosphorylation of MLC, which contributes to the pathogenesis of certain vascular diseases, such as vasospasm and hypertension. However, the dynamic principle of the system underlying the regulation of MLC phosphorylation remains to be clarified. Here, to elucidate this dynamic principle whereby Rho-kinase regulates MLC phosphorylation, we developed a mathematical model based on the behavior of thrombin-dependent MLC phosphorylation, which is regulated by the Rho-kinase signaling network. Through analyzing our mathematical model, we predict that MLC phosphorylation and myosin phosphatase activity exhibit bistability, and that a novel signaling pathway leading to the auto-activation of myosin phosphatase is required for the regulatory system of MLC phosphorylation. In addition, on the basis of experimental data, we propose that the auto-activation pathway of myosin phosphatase occurs in vivo. These results indicate that bistability of myosin phosphatase activity is responsible for the bistability of MLC phosphorylation, and the sustained phosphorylation of MLC is attributed to this feature of bistability
    • …
    corecore