14 research outputs found

    Isolation of Lactobacilli with probiotic properties from the human stomach

    Get PDF
    Aims: Recent evidence suggests that the human gastric microbiota is much more diverse than previously thought. The aim of this study was to assess the potential for isolating lactobacilli from the human stomach.Methods and Results: Lactobacilli were selectively cultured from gastric biopsies from 12 patients undergoing routine endoscopy. Lactobacilli were present in four of 12 biopsies. We isolated, in total 10 different strains representing five species (Lactobacillus gasseri, L. fermentum, L. vaginalis, L. reuteri and L. salivarius). The 10 isolates varied greatly in their ability to inhibit the growth of two Gram-positive bacteria and two Gram-negative bacteria. Furthermore, the acid and bile resistance profiles of the 10 isolates spanned a wide range. Conclusions: Five different Lactobacillus species were cultured from human gastric biopsies for the first time. Significance and Impact of the Study: Diverse Lactobacillus species are more prevalent in the human stomach than previously recognized, representing an untapped source of bacteria with beneficial probiotic and/or biotechnological properties

    Space Applications of the Geant4 Simulation Toolkit

    Get PDF
    The space radiation environment is highly variable and dynamic. With the increasing number and complexity of space missions, the detailed analysis of the effects of that environment often requires the use of advanced Monte Carlo radiation transport tools. In this presentation, various space-oriented developments and applications based on the Geant4 particle transport toolkit are described

    Bi-allelic Loss-of-Function CACNA1B Mutations in Progressive Epilepsy-Dyskinesia.

    Get PDF
    The occurrence of non-epileptic hyperkinetic movements in the context of developmental epileptic encephalopathies is an increasingly recognized phenomenon. Identification of causative mutations provides an important insight into common pathogenic mechanisms that cause both seizures and abnormal motor control. We report bi-allelic loss-of-function CACNA1B variants in six children from three unrelated families whose affected members present with a complex and progressive neurological syndrome. All affected individuals presented with epileptic encephalopathy, severe neurodevelopmental delay (often with regression), and a hyperkinetic movement disorder. Additional neurological features included postnatal microcephaly and hypotonia. Five children died in childhood or adolescence (mean age of death: 9 years), mainly as a result of secondary respiratory complications. CACNA1B encodes the pore-forming subunit of the pre-synaptic neuronal voltage-gated calcium channel Cav2.2/N-type, crucial for SNARE-mediated neurotransmission, particularly in the early postnatal period. Bi-allelic loss-of-function variants in CACNA1B are predicted to cause disruption of Ca2+ influx, leading to impaired synaptic neurotransmission. The resultant effect on neuronal function is likely to be important in the development of involuntary movements and epilepsy. Overall, our findings provide further evidence for the key role of Cav2.2 in normal human neurodevelopment.MAK is funded by an NIHR Research Professorship and receives funding from the Wellcome Trust, Great Ormond Street Children's Hospital Charity, and Rosetrees Trust. E.M. received funding from the Rosetrees Trust (CD-A53) and Great Ormond Street Hospital Children's Charity. K.G. received funding from Temple Street Foundation. A.M. is funded by Great Ormond Street Hospital, the National Institute for Health Research (NIHR), and Biomedical Research Centre. F.L.R. and D.G. are funded by Cambridge Biomedical Research Centre. K.C. and A.S.J. are funded by NIHR Bioresource for Rare Diseases. The DDD Study presents independent research commissioned by the Health Innovation Challenge Fund (grant number HICF-1009-003), a parallel funding partnership between the Wellcome Trust and the Department of Health, and the Wellcome Trust Sanger Institute (grant number WT098051). We acknowledge support from the UK Department of Health via the NIHR comprehensive Biomedical Research Centre award to Guy's and St. Thomas' National Health Service (NHS) Foundation Trust in partnership with King's College London. This research was also supported by the NIHR Great Ormond Street Hospital Biomedical Research Centre. J.H.C. is in receipt of an NIHR Senior Investigator Award. The research team acknowledges the support of the NIHR through the Comprehensive Clinical Research Network. The views expressed are those of the author(s) and not necessarily those of the NHS, the NIHR, Department of Health, or Wellcome Trust. E.R.M. acknowledges support from NIHR Cambridge Biomedical Research Centre, an NIHR Senior Investigator Award, and the University of Cambridge has received salary support in respect of E.R.M. from the NHS in the East of England through the Clinical Academic Reserve. I.E.S. is supported by the National Health and Medical Research Council of Australia (Program Grant and Practitioner Fellowship)

    Consumer attributes of farmhouse cheese and honey

    Get PDF
    End of Project ReportThis study determined the ideal combination of attributes of farmhouse cheese (cheddar-type) and farmhouse honey for different consumer segments.This research was carried out within the framework of the EU- FAIR programme (Project FAIR- CT95 -0360 “Agro-alimentaire Paysan EuropĂ©en”); the authors acknowledge EU financial support from this programme

    Space weather

    No full text
    Space weather is caused by conditions on the Sun and in the solar wind, the magnetosphere, ionosphere and thermosphere that can influence the performance and reliability of space-borne and ground-based technological systems and can affect human life or health. It affects man-made systems such as satellite electronics, terrestrial power grids and radio communications. This paper provides an overview of how space weather arises in the solar terrestrial system and how physical processes are able to cause space weather effects. We also discuss European perspectives and activities geared towards the possible initiation of a European Space Weather programme.

    Assessing Power System Flexibility for Variable Renewable Integration: A Flexibility Metric for Long-Term System Planning

    No full text
    Many countries around the world have instituted policies with the aim of increasing the amount of installed variable generation (VG), such as wind and solar. A consequence of increased penetrations of VG is that changes in their output must be met by the remainder of a system’s resources so that the demand-generation balance is maintained. This paper proposes a highlevel methodology to assess power system flexibility. In this context, flexibility is the ability of a power system to deploy its resources to meet changes in the system demand and that of variable generation. The inclusion of such analysis at the long-term system planning stage will help to ensure that systems are optimally planned and operated with high levels of VG. Two case studies are presented which illustrate the flexibility assessment methodology and highlight some key issues relating to flexibility in the context of long-term planning.Irish Research Counci

    Galileo GIOVE-A MEORAD Results and Analysis

    No full text
    The Giove-A spacecraft carries two radiation monitors, CEDEX, built by the University of Surrey and Merlin, built by QinetiQ, to study the radiation environment encountered in the Galileo orbit. The two monitors have been functioning since the beginning of the mission and have measured protons, heavy ions and electrons. The electron environment has been found to be highly variable and driven by solar interactions. Comparisons with AE-8 indicate that the electron energy spectrum for the period measured was somewhat harder than that expected from the model. A series of large Solar proton events were detected in December 2006, registering as enhanced fluxes of protons, heavy ions and also triggering a large enhancement in the outer electron belt. Comparisons with POLE and INTEGRAL/IREM show an improved spectral match over AE-8

    Geant4 Monte Carlo simulations of the galactic cosmic ray radiation environment on-board the international space station/columbus

    No full text
    A characterization of the Galactic Cosmic Ray (GCR) induced radiation environment on-board Columbus and the Inter-national Space Station (ISS) has been carried out using the Geant4 Monte Carlo particle transport toolkit and detailed geometry models of Columbus and ISS. Dose and dose equivalent rates, as well as penetrating particle spectra are presented. Simulation results indicate that the major part of the dose rates due to GCR protons are associated with secondary particles produced in the hull of ISS. Neutrons contribute about 15% of the GCR proton dose equivalent rate and mesons about 10%. More than 40% of the simulated GCR proton dose and dose equivalent rates are due to protons in the energy range above 10 GeV. Protons in the energy range above 50 GeV contribute only 5% to the dose rates. The total simulated dose and dose equivalent rates at solar maximum are 63 mu Gy/d and 123 mu Sv/d, respectively. The dose equivalent rate underestimates measurements made during the 2001 solar maximum. The discrepancy can be attributed to deficiencies in hadronic ion-nuclei interaction models for heavy ions and to the lack of such models above 10 GeV/N in Geant4

    Simplified SEE Sensitivity Screening for COTS Components in Space

    No full text
    International audienceWe introduce an approach aimed at prescreening COTS components according to their single-event effect (SEE) sensitivity for space missions in which a complete characterization of their individual response to protons and heavy ions is not feasible due to cost and time constraints. The method is applied to a set of SRAM memories for single-event upset (SEU) and single-event latchup (SEL) and the resulting expected SEE rates are compared with traditional approaches and in-flight data for a low-earth orbit polar and a geostationary orbit. Despite the limitations related to components with high-LET threshold and thick sensitive volumes, we conclude that the proposed method can be an efficient means of rejecting highly sensitive components or lots and performing the complete characterization only on passing devices
    corecore