20,252 research outputs found

    Gravitational Slingshot of Young Massive Stars in Orion

    Full text link
    The Orion Nebula Cluster (ONC) is the nearest region of massive star formation and thus a crucial testing ground for theoretical models. Of particular interest amongst the ONC's ~1000 members are: \theta^1 Ori C, the most massive binary in the cluster with stars of masses 38 and 9 MSun (Kraus et al. 2009); the Becklin-Neugebauer (BN) object, a 30 km/s runaway star of ~8 MSun (Tan 2004); and the Kleinmann-Low (KL) nebula protostar, a highly-obscured, ~15 MSun object still accreting gas while also driving a powerful, apparently "explosive" outflow (Allen & Burton 1993). The unusual behavior of BN and KL is much debated: How did BN acquire its high velocity? How is this related to massive star formation in the KL nebula? Here we report the results of a systematic survey using ~ 10^7 numerical experiments of gravitational interactions of the \theta^1C and BN stars. We show that dynamical ejection of BN from this triple system at its observed velocity leaves behind a binary with total energy and eccentricity matching those observed for \theta^1C. Five other observed properties of \theta^C are also consistent with it having ejected BN and altogether we estimate there is only a <~ 10^{-5} probability that \theta^1C has these properties by chance. We conclude that BN was dynamically ejected from the \theta^1C system about 4,500 years ago. BN has then plowed through the KL massive-star-forming core within the last 1,000 years causing its recently-enhanced accretion and outflow activity.Comment: 16 pages, 9 figures, 1 table, accepted to Ap

    IN-SYNC. VIII. Primordial Disk Frequencies in NGC 1333, IC 348, and the Orion A Molecular Cloud

    Get PDF
    In this paper, we address two issues related to primordial disk evolution in three clusters (NGC 1333, IC 348, and Orion A) observed by the INfrared Spectra of Young Nebulous Clusters (IN-SYNC) project. First, in each cluster, averaged over the spread of age, we investigate how disk lifetime is dependent on stellar mass. The general relation in IC 348 and Orion A is that primordial disks around intermediate mass stars (2--5MM_{\odot}) evolve faster than those around loss mass stars (0.1--1MM_{\odot}), which is consistent with previous results. However, considering only low mass stars, we do not find a significant dependence of disk frequency on stellar mass. These results can help to better constrain theories on gas giant planet formation timescales. Secondly, in the Orion A molecular cloud, in the mass range of 0.35--0.7MM_{\odot}, we provide the most robust evidence to date for disk evolution within a single cluster exhibiting modest age spread. By using surface gravity as an age indicator and employing 4.5 μm\mu m excess as a primordial disk diagnostic, we observe a trend of decreasing disk frequency for older stars. The detection of intra-cluster disk evolution in NGC 1333 and IC 348 is tentative, since the slight decrease of disk frequency for older stars is a less than 1-σ\sigma effect.Comment: 25 pages, 26 figures; submitted for publication (ApJ

    The Core Mass Function in the Massive Protocluster G286.21+0.17 revealed by ALMA

    Full text link
    We study the core mass function (CMF) of the massive protocluster G286.21+0.17 with the Atacama Large Millimeter/submillimeter Array via 1.3~mm continuum emission at a resolution of 1.0\arcsec\ (2500~au). We have mapped a field of 5.3\arcmin×\times5.3\arcmin\ centered on the protocluster clump. We measure the CMF in the central region, exploring various core detection algorithms, which give source numbers ranging from 60 to 125, depending on parameter selection. We estimate completeness corrections due to imperfect flux recovery and core identification via artificial core insertion experiments. For masses M1MM\gtrsim1\:M_\odot, the fiducial dendrogram-identified CMF can be fit with a power law of the form dN/dlogMMα{\rm{d}}N/{\rm{d}}{\rm{log}}M\propto{M}^{-\alpha} with α1.24±0.17\alpha \simeq1.24\pm0.17, slightly shallower than, but still consistent with, the index of the Salpeter stellar initial mass function of 1.35. Clumpfind-identified CMFs are significantly shallower with α0.64±0.13\alpha\simeq0.64\pm0.13. While raw CMFs show a peak near 1M1\:M_\odot, completeness-corrected CMFs are consistent with a single power law extending down to 0.5M\sim 0.5\:M_\odot, with only a tentative indication of a shallowing of the slope around 1M\sim1\:M_\odot. We discuss the implications of these results for star and star cluster formation theories.Comment: 11 pages, accepted by Ap

    IN-SYNC. VII. Evidence for a decreasing spectroscopic binary fraction from 1 to 100 Myr within the IN-SYNC sample

    Full text link
    We study the occurrence of spectroscopic binaries in young star-forming regions using the INfrared Spectroscopy of Young Nebulous Clusters(IN-SYNC) survey, carried out in SDSS-III with the APOGEE spectrograph. Multi-epoch observations of thousands of low-mass stars in Orion A, NGC 2264, NGC 1333, IC 348, and the Pleiades have been carried out, yielding H-band spectra with a nominal resolution of R=22,500 for sources with H \le 12 mag. Radial velocity precisions of \sim0.3 kms1km\:s^{-1} were achieved, which we use to identify radial velocity variations indicative of undetected companions. We use Monte Carlo simulations to assess the types of spectroscopic binaries to which we are sensitive, finding sensitivity to binaries with orbital periods <104< 10^{4} d, for stars with 2500KTeff6000K2500 {\rm K} \le T_\mathrm{eff} \le 6000 {\rm K} and vsini\it{v} \sin \it{i} \le 100 kms1km\:s^{-1}. Using Bayesian inference, we find evidence for a decline in the spectroscopic binary fraction, by a factor of 3-4 from the age of our pre-main-sequence sample to the Pleiades age . The significance of this decline is weakened if spot-induced radial-velocity jitter is strong in the sample, and is only marginally significant when comparing any one of the pre-main-sequence clusters against the Pleiades. However, the same decline in both sense and magnitude is found for each of the five pre-main-sequence clusters, and the decline reaches statistical significance of greater than 95% confidence when considering the pre-main-sequence clusters jointly. Our results suggest that dynamical processes disrupt the widest spectroscopic binaries (Porb103104P_{\rm orb} \approx 10^3 - 10^4 d) as clusters age, indicating that this occurs early in the stars' evolution, while they still reside within their nascent clusters.Comment: 21 pages, 9 Figure

    A New Method for the Assessment of Age and Age-Spread of Pre-Main Sequence Stars in Young Stellar Associations of the Magellanic Clouds

    Full text link
    We present a new method for the evaluation of the age and age-spread among pre-main-sequence (PMS) stars in star-forming regions in the Magellanic Clouds, accounting simultaneously for photometric errors, unresolved binarity, differential extinction, stellar variability, accretion and crowding. The application of the method is performed with the statistical construction of synthetic color-magnitude diagrams using PMS evolutionary models. We convert each isochrone into 2D probability distributions of artificial PMS stars in the CMD by applying the aforementioned biases that dislocate these stars from their original CMD positions. A maximum-likelihood technique is then applied to derive the probability for each observed star to have a certain age, as well as the best age for the entire cluster. We apply our method to the photometric catalog of ~2000 PMS stars in the young association LH 95 in the LMC, based on the deepest HST/ACS imaging ever performed toward this galaxy, with a detection limit of V~28, corresponding to M~0.2 Msun. Our treatment shows that the age determination is very sensitive to the considered grid of evolutionary models and the assumed binary fraction. The age of LH 95 is found to vary from 2.8 Myr to 4.4 Myr, depending on these factors. Our analysis allows us to disentangle a real age-spread from the apparent CMD-broadening caused by the physical and observational biases. We find that LH 95 hosts an age-spread well represented by a gaussian distribution with a FWHM of the order of 2.8 Myr to 4.2 Myr depending on the model and binary fraction. We detect a dependence of the average age of the system with stellar mass. This dependence does not appear to have any physical meaning, being rather due to imperfections of the PMS evolutionary models, which tend to predict lower ages for the intermediate masses, and higher ages for low-mass stars.Comment: 19 pages, 16 figures, accepted for publication by the Astrophysical Journa
    corecore