103 research outputs found

    Regulation of the cd38 promoter in human airway smooth muscle cells by TNF-α and dexamethasone

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>CD38 is expressed in human airway smooth muscle (HASM) cells, regulates intracellular calcium, and its expression is augmented by tumor necrosis factor alpha (TNF-α). CD38 has a role in airway hyperresponsiveness, a hallmark of asthma, since deficient mice develop attenuated airway hyperresponsiveness compared to wild-type mice following intranasal challenges with cytokines such as IL-13 and TNF-α. Regulation of CD38 expression in HASM cells involves the transcription factor NF-κB, and glucocorticoids inhibit this expression through NF-κB-dependent and -independent mechanisms. In this study, we determined whether the transcriptional regulation of CD38 expression in HASM cells involves response elements within the promoter region of this gene.</p> <p>Methods</p> <p>We cloned a putative 3 kb promoter fragment of the human <it>cd38 </it>gene into pGL3 basic vector in front of a luciferase reporter gene. Sequence analysis of the putative <it>cd38 </it>promoter region revealed one NF-κB and several AP-1 and glucocorticoid response element (GRE) motifs. HASM cells were transfected with the 3 kb promoter, a 1.8 kb truncated promoter that lacks the NF-κB and some of the AP-1 sites, or the promoter with mutations of the NF-κB and/or AP-1 sites. Using the electrophoretic mobility shift assays, we determined the binding of nuclear proteins to oligonucleotides encoding the putative <it>cd38 </it>NF-κB, AP-1, and GRE sites, and the specificity of this binding was confirmed by gel supershift analysis with appropriate antibodies.</p> <p>Results</p> <p>TNF-α induced a two-fold activation of the 3 kb promoter following its transfection into HASM cells. In cells transfected with the 1.8 kb promoter or promoter constructs lacking NF-κB and/or AP-1 sites or in the presence of dexamethasone, there was no induction in the presence of TNF-α. The binding of nuclear proteins to oligonucleotides encoding the putative <it>cd38 </it>NF-κB site and some of the six AP-1 sites was increased by TNF-α, and to some of the putative <it>cd38 </it>GREs by dexamethasone.</p> <p>Conclusion</p> <p>The EMSA results and the cd38 promoter-reporter assays confirm the functional role of NF-κB, AP-1 and GREs in the cd38 promoter in the transcriptional regulation of CD38.</p

    Murine Models and Cell Lines for the Investigation of Pheochromocytoma: Applications for Future Therapies?

    Get PDF
    Pheochromocytomas (PCCs) are slow-growing neuroendocrine tumors arising from adrenal chromaffin cells. Tumors arising from extra-adrenal chromaffin cells are called paragangliomas. Metastases can occur up to approximately 60% or even more in specific subgroups of patients. There are still no well-established and clinically accepted “metastatic” markers available to determine whether a primary tumor is or will become malignant. Surgical resection is the most common treatment for non-metastatic PCCs, but no standard treatment/regimen is available for metastatic PCC. To investigate what kind of therapies are suitable for the treatment of metastatic PCC, animal models or cell lines are very useful. Over the last two decades, various mouse and rat models have been created presenting with PCC, which include models presenting tumors that are to a certain degree biochemically and/or molecularly similar to human PCC, and develop metastases. To be able to investigate which chemotherapeutic options could be useful for the treatment of metastatic PCC, cell lines such as mouse pheochromocytoma (MPC) and mouse tumor tissue (MTT) cells have been recently introduced and they both showed metastatic behavior. It appears these MPC and MTT cells are biochemically and molecularly similar to some human PCCs, are easily visualized by different imaging techniques, and respond to different therapies. These studies also indicate that some mouse models and both mouse PCC cell lines are suitable for testing new therapies for metastatic PCC

    Autocitação fictiva em português europeu e brasileiro

    Get PDF
    A Autocitação Fictiva (ROCHA, 2004, 2006) é um tipo discursivo de fictividade por meio do qual seus conceptualizadores impõem uma perspectiva avaliativa ao discurso direto. Por meio de um cenário não verídico de reportação discursiva, o agente ilocutório remete-se a um cenário prévio e suposto de fala, com propósito de permitir acesso mental ao cenário verídico de pensamento. O objetivo deste artigo é a descrição e análise da autocitação fictiva e sua co-extensão factiva em corpora orais de Português Europeu e Brasileiro, a partir da construção (EU) DISSE/FALEI X-ORACIONAL. Utilizam-se como dados o corpus C-ORALROM Português (BACELAR DO NASCIMENTO et al., 2005) e o corpus C-ORAL Brasil (RASO; MELLO, 2010, 2012), bem como os corpora CINTIL (2011), NURC (2011) e um reality show. Os resultados apontam para contrastes conceptuais e diafásicos entre usos de “disse” e “falei” nas variedades nacionais, uma vez que o verbo “falar” não costuma ser usado para introduzir discurso reportado em PE e que certos frames interacionais são propícios ao surgimento de autocitação fictiva, como o reality show. Contudo, a fictividade afeta a autocitação em ambas variedades, mapeada por pistas que incluem reportação monológica, co-texto epistêmico, escaneamento mental, incongruência dêitica e atos de fala como promessa

    Clinical, neuroimaging, and molecular spectrum of TECPR2‐associated hereditary sensory and autonomic neuropathy with intellectual disability

    Get PDF
    Bi‐allelic TECPR2 variants have been associated with a complex syndrome with features of both a neurodevelopmental and neurodegenerative disorder. Here, we provide a comprehensive clinical description and variant interpretation framework for this genetic locus. Through international collaboration, we identified 17 individuals from 15 families with bi‐allelic TECPR2‐variants. We systemically reviewed clinical and molecular data from this cohort and 11 cases previously reported. Phenotypes were standardized using Human Phenotype Ontology terms. A cross‐sectional analysis revealed global developmental delay/intellectual disability, muscular hypotonia, ataxia, hyporeflexia, respiratory infections, and central/nocturnal hypopnea as core manifestations. A review of brain magnetic resonance imaging scans demonstrated a thin corpus callosum in 52%. We evaluated 17 distinct variants. Missense variants in TECPR2 are predominantly located in the N‐ and C‐terminal regions containing β‐propeller repeats. Despite constituting nearly half of disease‐associated TECPR2 variants, classifying missense variants as (likely) pathogenic according to ACMG criteria remains challenging. We estimate a pathogenic variant carrier frequency of 1/1221 in the general and 1/155 in the Jewish Ashkenazi populations. Based on clinical, neuroimaging, and genetic data, we provide recommendations for variant reporting, clinical assessment, and surveillance/treatment of individuals with TECPR2‐associated disorder. This sets the stage for future prospective natural history studies

    Intestinal overexpression of IL

    No full text
    corecore