180 research outputs found

    S5S^5: Probing the Milky Way and Magellanic Clouds potentials with the 6-D map of the Orphan-Chenab stream

    Full text link
    We present a 6-D map of the Orphan-Chenab (OC) stream by combining the data from 5 years of Southern Stellar Stream Spectroscopic Survey S5S^5 observations with Gaia EDR3 data. We reconstruct the proper motion, radial velocity, distance and on-sky track of stream stars with spline models and extract the stellar density along the stream. The stream has a total luminosity of MV=8.2M_V=-8.2 and an average metallicity of [Fe/H]=1.9[Fe/H]=-1.9, similar to classical MW satellites like Draco. The stream shows drastic changes in its physical width varying from 200 pc to 1 kpc, a constant line of sight velocity dispersion of 5 km/s, but an increase in the velocity dispersion along the stream near pericenter to \sim 10 km/s. Despite the large apparent variation in the stellar number density along the stream, the flow rate of stars along the stream is remarkably constant. We model the 6-D stream track by a Lagrange-point stripping method with a flexible MW potential in the presence of a moving extended LMC potential. This allows us to constrain the mass profile of the MW within the distance range 15.6 < r < 55.5 kpc, with the best measured enclosed mass of (2.85±0.1)×1011M(2.85\pm 0.1)\times10^{11}\,M_\odot within 32.4 kpc. With the OC stream's closest approach distance to the LMC of 21\sim 21 kpc, our stream measurements are highly sensitive to the LMC mass profile with the most precise measurement of the LMC's enclosed mass being at 32.8 kpc with M=(7.02±0.9)×1010MM=(7.02\pm 0.9)\times10^{10}\, {M}_\odot. We confidently detect that the LMC DM halo extends to at least 53 kpc. The fitting of the OC stream allows us to constrain the past LMC trajectory and the degree of dynamical friction it experienced. We demonstrate that the stars on the OC stream show large energy and angular momentum spreads caused by the LMC perturbation and revealing the limitations of orbital invariants for substructure identification in the MW halo.Comment: submitted to MNRAS; comments welcome; data released with the paper is available on Zenodo https://zenodo.org/record/722265

    Broken into Pieces::ATLAS and Aliqa Uma as One Single Stream

    Get PDF
    We present the first spectroscopic measurements of the ATLAS and Aliqa Uma streams from the Southern Stellar Stream Spectroscopic Survey (S5S^5), in combination with the photometric data from the Dark Energy Survey and astrometric data from GaiaGaia. From the coherence of spectroscopic members in radial velocity and proper motion, we find out that these two systems are extremely likely to be one stream with discontinuity in morphology and density on the sky (the "kink" feature). We refer to this entire stream as the ATLAS-Aliqa Uma stream, or the AAU stream. We perform a comprehensive exploration of the effect of baryonic substructures and find that only an encounter with the Sagittarius dwarf 0.5\sim 0.5 Gyr ago can create a feature similar to the observed "kink". In addition, we also identify two gaps in the ATLAS component associated with the broadening in the stream width (the "broadening" feature). These gaps have likely been created by small mass perturbers, such as dark matter halos, as the AAU stream is the most distant cold stream known with severe variations in both the stream surface density and the stream track on the sky. With the stream track, stream distance and kinematic information, we determine the orbit of the AAU stream and find that it has been affected by the Large Magellanic Cloud, resulting in a misalignment between the proper motion and stream track. Together with the Orphan-Chenab Stream, AAU is the second stream pair that has been found to be a single stream separated into two segments by external perturbation.Comment: 33 pages, 22 figures (including 1 movie), 3 tables. Accepted for publication in Ap

    The southern stellar stream spectroscopic survey (S (5)): Overview, target selection, data reduction, validation, and early science

    Get PDF
    We introduce the southern stellar stream spectroscopy survey (S5), an on-going program to map the kinematics and chemistry of stellar streams in the southern hemisphere. The initial focus of S5 has been spectroscopic observations of recently identified streams within the footprint of the dark energy survey (DES), with the eventual goal of surveying streams across the entire southern sky. Stellar streams are composed of material that has been tidally striped from dwarf galaxies and globular clusters and hence are excellent dynamical probes of the gravitational potential of the Milky Way, as well as providing a detailed snapshot of its accretion history. Observing with the 3.9 m Anglo-Australian Telescope’s 2-degree-Field fibre positioner and AAOmega spectrograph, and combining the precise photometry of DES DR1 with the superb proper motions from Gaia DR2, allows us to conduct an efficient spectroscopic survey to map these stellar streams. So far S5 has mapped nine DES streams and three streams outside of DES; the former are the first spectroscopic observations of these recently discovered streams. In addition to the stream survey, we use spare fibres to undertake a Milky Way halo survey and a low-redshift galaxy survey. This paper presents an overview of the S5 program, describing the scientific motivation for the survey, target selection, observation strategy, data reduction, and survey validation. Finally, we describe early science results on stellar streams and Milky Way halo stars drawn from the survey. Updates on S5, including future public data releases, can be found at http://s5collab.github.io

    The southern stellar stream spectroscopic survey (S5): Overview, target selection, data reduction, validation, and early science

    Get PDF
    We introduce the Southern Stellar Stream Spectroscopy Survey (S⁵), an on-going program to map the kinematics and chemistry of stellar streams in the Southern Hemisphere. The initial focus of S⁵ has been spectroscopic observations of recently identified streams within the footprint of the Dark Energy Survey (DES), with the eventual goal of surveying streams across the entire southern sky. Stellar streams are composed of material that has been tidally striped from dwarf galaxies and globular clusters and hence are excellent dynamical probes of the gravitational potential of the Milky Way, as well as providing a detailed snapshot of its accretion history. Observing with the 3.9-m Anglo-Australian Telescope’s 2-degree-Field fibre positioner and AAOmega spectrograph, and combining the precise photometry of DES DR1 with the superb proper motions from Gaia DR2, allows us to conduct an efficient spectroscopic survey to map these stellar streams. So far S⁵ has mapped 9 DES streams and 3 streams outside of DES; the former are the first spectroscopic observations of these recently discovered streams. In addition to the stream survey, we use spare fibres to undertake a Milky Way halo survey and a low-redshift galaxy survey. This paper presents an overview of the S⁵ program, describing the scientific motivation for the survey, target selection, observation strategy, data reduction and survey validation. Finally, we describe early science results on stellar streams and Milky Way halo stars drawn from the survey. Updates on S⁵, including future public data releases, can be found at http://s5collab.github.io

    Cortical Layer 1 and Layer 2/3 Astrocytes Exhibit Distinct Calcium Dynamics In Vivo

    Get PDF
    Cumulative evidence supports bidirectional interactions between astrocytes and neurons, suggesting glial involvement of neuronal information processing in the brain. Cytosolic calcium (Ca2+) concentration is important for astrocytes as Ca2+ surges co-occur with gliotransmission and neurotransmitter reception. Cerebral cortex is organized in layers which are characterized by distinct cytoarchitecture. We asked if astrocyte-dominant layer 1 (L1) of the somatosensory cortex was different from layer 2/3 (L2/3) in spontaneous astrocytic Ca2+ activity and if it was influenced by background neural activity. Using a two-photon laser scanning microscope, we compared spontaneous Ca2+ activity of astrocytic somata and processes in L1 and L2/3 of anesthetized mature rat somatosensory cortex. We also assessed the contribution of background neural activity to the spontaneous astrocytic Ca2+ dynamics by investigating two distinct EEG states (“synchronized” vs. “de-synchronized” states). We found that astrocytes in L1 had nearly twice higher Ca2+ activity than L2/3. Furthermore, Ca2+ fluctuations of processes within an astrocyte were independent in L1 while those in L2/3 were synchronous. Pharmacological blockades of metabotropic receptors for glutamate, ATP, and acetylcholine, as well as suppression of action potentials did not have a significant effect on the spontaneous somatic Ca2+ activity. These results suggest that spontaneous astrocytic Ca2+ surges occurred in large part intrinsically, rather than neural activity-driven. Our findings propose a new functional segregation of layer 1 and 2/3 that is defined by autonomous astrocytic activity

    Relative mobility determines the efficacy of MPAs in a two species mixed fishery with conflicting management objectives

    Get PDF
    Marine Protected Areas (MPAs) have been used to protect species in need of conservation and as a fisheries management tool. It has been suggested MPAs can benefit mobile stocks by protecting spawning grounds whilst also allowing yields to be maintained as mature fish move out of the protected areas. However, the robustness of this claim in mixed species fisheries has yet to be established. We use a simulation model to explore the efficacy of spatial closures and effort regulation when other forms of fishery control (e.g., Total Allowable Catches) are absent or non-enforced as ways of addressing management objectives that are difficult to reconcile due to the contrasting life-histories of a target and a bycatch, conservation species in a two-species fishery. The mobility of each stock in such a fishery affects the benefits conferred by an MPA. The differing management objectives of the two species can be partially met by effort regulations or closures when the species exhibit similar mobility. However, a more mobile conservation species prevents both sets of aims being met by either management tool. We use simulations to explore how spatial closures and effort regulation can be used to seek compromise between stakeholders when the mobility of one stock prevents conflicting management objectives to be fully met. Our results demonstrate that stock mobility is a key factor in considering whether an MPA can meet conflicting aims in a multispecies fishery compromised of stocks with differing life histories and mobilities
    corecore