2,491 research outputs found

    Hematodinium-Australis N-Sp, a parasitic dinoflagellate of the sand crab Portunus-pelagicus from Moreton Bay, Australia

    Get PDF
    A new species of parasitic dinoflagellate is described from the portunid crab Portunus pelagicus. The dinoflagellate is a member of the genus Hematodinium which formerly consisted of a single species, H. perezi. Members of the genus have been reported in crabs and lobsters from Europe and North America, where in some circumstances they cause significant mortalities to host populations. The new species is the first member of the family Syndinidae to be fully described from Australia. The new species differs from other forms of Hematodinium primarily by the size of the trophont (vegetative stage), the ovoid plasmodium, and the small beaded form of condensed chromatin in the nucleus. Infection experiments indicated that the parasite may be transmitted within and between the 2 host species. in addition, the pre-patent period of the new form was at least 16 d which is much greater than that reported from other forms

    Controlling the polarisation correlation of photon pairs from a charge-tuneable quantum dot

    Full text link
    Correlation between the rectilinear polarisations of the photons emitted from the biexciton decay in a single quantum dot is investigated in a device which allows the charge-state of the dot to be controlled. Optimising emission from the neutral exciton states maximises the operating efficiency of the biexciton decay. This is important for single dot applications such as a triggered source of entangled photons. As the bias on the device is reduced correlation between the two photons is found to fall dramatically as emission from the negatively charged exciton becomes significant. Lifetime measurements demonstrate that electronic spin-scattering is the likely cause.Comment: 3 figure

    Inversion of exciton level splitting in quantum dots

    Get PDF
    The demonstration of degeneracy of exciton spin states is an important step toward the production of entangled photon pairs from the biexciton cascade. We measure the fine structure of exciton and biexciton states for a large number of single InAs quantum dots in a GaAs matrix; the energetic splitting of the horizontally and vertically polarized components of the exciton doublet is shown to decrease as the exciton confinement decreases, crucially passing through zero and changing sign. Thermal annealing is shown to reduce the exciton confinement, thereby increasing the number of dots with splitting close to zero

    Origin of the oscillator strength of the triplet state of a trion in a magnetic field

    Get PDF
    The dynamics of the spin-triplet trion state, under high magnetic field in a GaAs/AlGaAs quantum well, are studied using time resolved spectroscopy. The oscillator strength of the triplet transition is shown to rise with increasing electron density, in good agreement with a theoretical model where the trion interacts with excess electrons in the quantum well. This analysis suggests that the spin-triplet trion state, which is expected to be an optically "dark" state, is experimentally observable due to the interactions with the excess electrons, demonstrating that X- cannot be regarded as an isolated three particle complex

    Multi-dimensional photonic states from a quantum dot

    Get PDF
    Quantum states superposed across multiple particles or degrees of freedom offer an advantage in the development of quantum technologies. Creating these states deterministically and with high efficiency is an ongoing challenge. A promising approach is the repeated excitation of multi-level quantum emitters, which have been shown to naturally generate light with quantum statistics. Here we describe how to create one class of higher dimensional quantum state, a so called W-state, which is superposed across multiple time bins. We do this by repeated Raman scattering of photons from a charged quantum dot in a pillar microcavity. We show this method can be scaled to larger dimensions with no reduction in coherence or single-photon character. We explain how to extend this work to enable the deterministic creation of arbitrary time-bin encoded qudits

    Ramsey interference in a multilevel quantum system

    Get PDF
    We report Ramsey interference in the excitonic population of a negatively charged quantum dot measured in resonant fluorescence. Our experiments show that the decay time of the Ramsey interference is limited by the spectral width of the transition. Applying a vertical magnetic field induces Zeeman split transitions that can be addressed by changing the laser detuning to reveal two-, three-, and four-level system behavior. We show that under finite field the phase-sensitive control of two optical pulses from a single laser can be used to prepare both population and spin states simultaneously. We also demonstrate the coherent optical manipulation of a trapped spin in a quantum dot in a Faraday geometry magnetic field

    Quantum-Dot-Based Telecommunication-Wavelength Quantum Relay

    Get PDF
    The development of quantum relays for long-haul and attack-proof quantum communication networks operating with weak coherent laser pulses requires entangled photon sources at telecommunication wavelengths with intrinsic single-photon emission for most practical implementations. Using a semiconductor quantum dot emitting entangled photon pairs in the telecommunication O band, we demonstrate a quantum relay fulfilling both of these conditions. The system achieves a maximum fidelity of 94.5% for implementation of a standard four-state protocol with input states generated by a laser. We further investigate robustness against frequency detuning of the narrow-band input and perform process tomography of the teleporter, revealing operation for arbitrary pure input states, with an average gate fidelity of 83.6%. The results highlight the potential of semiconductor light sources for compact and robust quantum-relay technology that is compatible with existing communication infrastructures

    Controllable Photonic Time-Bin Qubits from a Quantum Dot

    Get PDF
    Photonic time bin qubits are well suited to transmission via optical fibres and waveguide circuits. The states take the form 12(α∣0⟩+eiϕβ∣1⟩)\frac{1}{\sqrt{2}}(\alpha \ket{0} + e^{i\phi}\beta \ket{1}), with ∣0⟩\ket{0} and ∣1⟩\ket{1} referring to the early and late time bin respectively. By controlling the phase of a laser driving a spin-flip Raman transition in a single-hole-charged InAs quantum dot we demonstrate complete control over the phase, ϕ\phi. We show that this photon generation process can be performed deterministically, with only a moderate loss in coherence. Finally, we encode different qubits in different energies of the Raman scattered light, demonstrating wavelength division multiplexing at the single photon level

    An entangled-LED-driven quantum relay over 1km

    Get PDF
    Quantum cryptography allows confidential information to be communicated between two parties, with secrecy guaranteed by the laws of nature alone. However, upholding guaranteed secrecy over quantum communication networks poses a further challenge, as classical receive-and-resend routing nodes can only be used conditional of trust by the communicating parties. Here, we demonstrate the operation of a quantum relay over 1 km of optical fiber, which teleports a sequence of photonic quantum bits to a receiver by utilizing entangled photons emitted by a semiconductor LED. The average relay fidelity of the link is 0.90+/-0.03, exceeding the classical bound of 0.75 for the set of states used, and sufficiently high to allow error correction. The fundamentally low multi-photon emission statistics and the integration potential of the source present an appealing platform for future quantum networks.The authors would like to acknowledge partial financial support through the UK EPSRC and the EU Marie Curie Initial Training Network Spin-optronics.This is the final version of the article. It first appeared from Nature Publishing Group via http://dx.doi.org/10.1038/npjqi.2016.

    A quantum light-emitting diode for the standard telecom window around 1,550 nm.

    Get PDF
    Single photons and entangled photon pairs are a key resource of many quantum secure communication and quantum computation protocols, and non-Poissonian sources emitting in the low-loss wavelength region around 1,550 nm are essential for the development of fibre-based quantum network infrastructure. However, reaching this wavelength window has been challenging for semiconductor-based quantum light sources. Here we show that quantum dot devices based on indium phosphide are capable of electrically injected single photon emission in this wavelength region. Using the biexciton cascade mechanism, they also produce entangled photons with a fidelity of 87 ± 4%, sufficient for the application of one-way error correction protocols. The material system further allows for entangled photon generation up to an operating temperature of 93 K. Our quantum photon source can be directly integrated with existing long distance quantum communication and cryptography systems, and provides a promising material platform for developing future quantum network hardware
    • …
    corecore