260 research outputs found

    A putative relay circuit providing low-threshold mechanoreceptive input to lamina I projection neurons via vertical cells in lamina II of the rat dorsal horn

    Get PDF
    Background: Lamina I projection neurons respond to painful stimuli, and some are also activated by touch or hair movement. Neuropathic pain resulting from peripheral nerve damage is often associated with tactile allodynia (touch-evoked pain), and this may result from increased responsiveness of lamina I projection neurons to non-noxious mechanical stimuli. It is thought that polysynaptic pathways involving excitatory interneurons can transmit tactile inputs to lamina I projection neurons, but that these are normally suppressed by inhibitory interneurons. Vertical cells in lamina II provide a potential route through which tactile stimuli can activate lamina I projection neurons, since their dendrites extend into the region where tactile afferents terminate, while their axons can innervate the projection cells. The aim of this study was to determine whether vertical cell dendrites were contacted by the central terminals of low-threshold mechanoreceptive primary afferents. Results: We initially demonstrated contacts between dendritic spines of vertical cells that had been recorded in spinal cord slices and axonal boutons containing the vesicular glutamate transporter 1 (VGLUT1), which is expressed by myelinated low-threshold mechanoreceptive afferents. To confirm that the VGLUT1 boutons included primary afferents, we then examined vertical cells recorded in rats that had received injections of cholera toxin B subunit (CTb) into the sciatic nerve. We found that over half of the VGLUT1 boutons contacting the vertical cells were CTb-immunoreactive, indicating that they were of primary afferent origin. Conclusions: These results show that vertical cell dendritic spines are frequently contacted by the central terminals of myelinated low-threshold mechanoreceptive afferents. Since dendritic spines are associated with excitatory synapses, it is likely that most of these contacts were synaptic. Vertical cells in lamina II are therefore a potential route through which tactile afferents can activate lamina I projection neurons, and this pathway could play a role in tactile allodynia

    Redox proteomics of the inflammatory secretome identifies a common set of redoxins and other glutathionylated proteins released in inflammation, influenza virus infection and oxidative stress

    Get PDF
    Protein cysteines can form transient disulfides with glutathione (GSH), resulting in the production of glutathionylated proteins, and this process is regarded as a mechanism by which the redox state of the cell can regulate protein function. Most studies on redox regulation of immunity have focused on intracellular proteins. In this study we have used redox proteomics to identify those proteins released in glutathionylated form by macrophages stimulated with lipopolysaccharide (LPS) after pre-loading the cells with biotinylated GSH. Of the several proteins identified in the redox secretome, we have selected a number for validation. Proteomic analysis indicated that LPS stimulated the release of peroxiredoxin (PRDX) 1, PRDX2, vimentin (VIM), profilin1 (PFN1) and thioredoxin 1 (TXN1). For PRDX1 and TXN1, we were able to confirm that the released protein is glutathionylated. PRDX1, PRDX2 and TXN1 were also released by the human pulmonary epithelial cell line, A549, infected with influenza virus. The release of the proteins identified was inhibited by the anti-inflammatory glucocorticoid, dexamethasone (DEX), which also inhibited tumor necrosis factor (TNF)-α release, and by thiol antioxidants (N-butanoyl GSH derivative, GSH-C4, and N-acetylcysteine (NAC), which did not affect TNF-α production. The proteins identified could be useful as biomarkers of oxidative stress associated with inflammation, and further studies will be required to investigate if the extracellular forms of these proteins has immunoregulatory functions

    Protocol for faecal microbiota transplantation in ulcerative colitis (FMTUC): a randomised feasibility study

    Get PDF
    Background The interaction of the gut microbiota with the human host is implicated in the pathogenesis of inflammatory and immunological diseases including ulcerative colitis (UC). Faecal microbiota transplantation (FMT) as a method of restoring gut microbial diversity is of increasing interest as a therapeutic approach in the management of UC. The current literature lacks consensus about the dose of FMT, route of administration and duration of response. Methods and analysis This single-blinded randomised trial will explore the feasibility of FMT in 30 treatment-naïve patients with histologically confirmed distal UC limited to the recto-sigmoid region (up to 40 cm from the anal verge). This study aims to estimate the magnitude of treatment response to FMT under controlled conditions. The intervention (FMT) will be administered by rectal retention enema. It will test the feasibility of randomising patients to: (i) single FMT dose, (ii) five daily FMT doses or (iii) control (no FMT dose). All groups will receive standard antibiotic gut decontamination and bowel preparation before FMT. Recruitment will take place over a 24-month period with a 12-week patient follow-up. Trial objectives include evaluation of the magnitude of treatment response to FMT, investigation of the clinical value of metabolic phenotyping for predicting the clinical response to FMT and testing the recruitment rate of donors and patients for a study in FMT. This feasibility trial will enable an estimate of number of patients needed, help determine optimal study conditions and inform the choice of endpoints for a future definitive phase III study. Ethics and dissemination The trial is approved by the regional ethics committee and is sponsored by Abertawe Bro Morgannwg University’s Health Board. Written informed consent from all patients will be obtained. Serious adverse events will be reported to the sponsor. Trial results will be disseminated via peer review publication and shared with trial participants. Trial registration number ISRCTN58082603; Pre-results

    Patients with Endoscopically Visible Polypoid Adenomatous Lesions Within the Extent of Ulcerative Colitis Have an Increased Risk of Colorectal Cancer Despite Endoscopic Resection.

    Get PDF
    OBJECTIVES: Ulcerative colitis (UC) is associated with an increased risk of colorectal cancer (CRC). Few studies have looked at long-term outcomes of endoscopically visible adenomatous lesions removed by endoscopic resection in these patients. We aimed to assess the risk of developing CRC in UC patients with adenomatous lesions that develop within the segment of colitis compared to the remainder of an ulcerative colitis cohort. METHODS: We identified patients with a confirmed histological diagnosis of UC from 1991 to 2004 and noted outcomes till June 2011. The Kaplan-Meier method was used to estimate cumulative probability of subsequent CRC. Factors associated with risk of CRC were assessed in a Cox proportional hazards model. RESULTS: Twenty-nine of 301 patients with UC had adenomatous lesions noted within the segment of colitis. The crude incidence rate of developing colon cancer in patients with UC was 2.45 (95 % CI 1.06-4.83) per 1000 PYD and in those with UC and polypoid adenomas within the extent of inflammation was 11.07 (95 % CI 3.59-25.83) per 1000 PYD. Adjusted hazards ratio of developing CRC on follow-up in UC patients with polypoid dysplastic adenomatous lesions within the extent of inflammation was 4.0 (95 % CI 1.3-12.4). CONCLUSIONS: The risk of developing CRC is significantly higher in UC patients with polypoid adenomatous lesions, within the extent of inflammation, despite endoscopic resection. Patients and physicians should take the increased risk into consideration during follow-up of these patients

    Novel Serial Positive Enrichment Technology Enables Clinical Multiparameter Cell Sorting

    Get PDF
    A general obstacle for clinical cell preparations is limited purity, which causes variability in the quality and potency of cell products and might be responsible for negative side effects due to unwanted contaminants. Highly pure populations can be obtained best using positive selection techniques. However, in many cases target cell populations need to be segregated from other cells by combinations of multiple markers, which is still difficult to achieve – especially for clinical cell products. Therefore, we have generated low-affinity antibody-derived Fab-fragments, which stain like parental antibodies when multimerized via Strep-tag and Strep-Tactin, but can subsequently be removed entirely from the target cell population. Such reagents can be generated for virtually any antigen and can be used for sequential positive enrichment steps via paramagnetic beads. First protocols for multiparameter enrichment of two clinically relevant cell populations, CD4high/CD25high/CD45RAhigh ‘regulatory T cells’ and CD8high/CD62Lhigh/CD45RAneg ‘central memory T cells’, have been established to determine quality and efficacy parameters of this novel technology, which should have broad applicability for clinical cell sorting as well as basic research

    Two-stage directed self-assembly of a cyclic [3]catenane.

    Get PDF
    Interlocked molecules possess properties and functions that depend upon their intricate connectivity. In addition to the topologically trivial rotaxanes, whose structures may be captured by a planar graph, the topologically non-trivial knots and catenanes represent some of chemistry's most challenging synthetic targets because of the three-dimensional assembly necessary for their construction. Here we report the synthesis of a cyclic [3]catenane, which consists of three mutually interpenetrating rings, via an unusual synthetic route. Five distinct building blocks self-assemble into a heteroleptic triangular framework composed of two joined Fe(II)3L3 circular helicates. Subcomponent exchange then enables specific points in the framework to be linked together to generate the cyclic [3]catenane product. Our method represents an advance both in the intricacy of the metal-templated self-assembly procedure and in the use of selective imine exchange to generate a topologically complex product.This work was supported by the UK Engineering and Physical Sciences Research Council (EPSRC) and a Marie Curie fellowship for J.J.H. (ITN-2010–264645). The authors thank the Diamond Light Source (UK) for synchrotron beamtime on I19 (MT7984 and MT8464).This is the author accepted manuscript. The final version is available from NPG via http://dx.doi.org/10.1038/nchem.220

    Treatment of two postoperative endophthalmitis cases due to Aspergillus flavus and Scopulariopsis spp. with local and systemic antifungal therapy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Endophthalmitis is the inflammatory response to invasion of the eye with bacteria or fungi. The incidence of endophthalmitis after cataract surgery varies between 0.072–0.13 percent. Treatment of endophthalmitis with fungal etiology is difficult.</p> <p>Case Presentation</p> <p><b>Case 1: </b>A 71-year old male diabetic patient developed postoperative endophthalmitis due to <it>Aspergillus flavus</it>. The patient was treated with topical amphotericin B ophthalmic solution, intravenous (IV) liposomal amphotericin-B and caspofungin following vitrectomy.</p> <p><b>Case 2: </b>A 72-year old male cachectic patient developed postoperative endophthalmitis due to <it>Scopulariopsis </it>spp. The patient was treated with topical and IV voriconazole and caspofungin.</p> <p>Conclusion</p> <p><it>Aspergillus </it>spp. are responsible of postoperative fungal endophthalmitis. Endophthalmitis caused by <it>Scopulariopsis </it>spp. is a very rare condition. The two cases were successfully treated with local and systemic antifungal therapy.</p

    Assessment of three antibiotic combination regimens against Gram-negative bacteria causing neonatal sepsis in low- and middle-income countries

    Get PDF
    Gram-negative bacteria (GNB) are a major cause of neonatal sepsis in low- and middle-income countries (LMICs). Although the World Health Organization (WHO) reports that over 80% of these sepsis deaths could be prevented through improved treatment, the efficacy of the currently recommended first- and second-line treatment regimens for this condition is increasingly affected by high rates of drug resistance. Here we assess three well known antibiotics, fosfomycin, flomoxef and amikacin, in combination as potential antibiotic treatment regimens by investigating the drug resistance and genetic profiles of commonly isolated GNB causing neonatal sepsis in LMICs. The five most prevalent bacterial isolates in the NeoOBS study (NCT03721302) are Klebsiella pneumoniae, Acinetobacter baumannii, E. coli, Serratia marcescens and Enterobacter cloacae complex. Among these isolates, high levels of ESBL and carbapenemase encoding genes are detected along with resistance to ampicillin, gentamicin and cefotaxime, the current WHO recommended empiric regimens. The three new combinations show excellent in vitro activity against ESBL-producing K. pneumoniae and E. coli isolates. Our data should further inform and support the clinical evaluation of these three antibiotic combinations for the treatment of neonatal sepsis in areas with high rates of multidrug-resistant Gram-negative bacteria

    Human Neonatal Dendritic Cells Are Competent in MHC Class I Antigen Processing and Presentation

    Get PDF
    Neonates are clearly more susceptible to severe disease following infection with a variety of pathogens than are adults. However, the causes for this are unclear and are often attributed to immunological immaturity. While several aspects of immunity differ between adults and neonates, the capacity of dendritic cells in neonates to process and present antigen to CD8+ T cells remains to be addressed. We used human CD8+ T cell clones to compare the ability of neonatal and adult monocyte-derived dendritic cells to present or process and present antigen using the MHC class I pathway. Specifically, we assessed the ability of dendritic cells to present antigenic peptide, present an HLA-E–restricted antigen, process and present an MHC class I-restricted antigen through the classical MHC class I pathway, and cross present cell-associated antigen via MHC class I. We found no defect in neonatal dendritic cells to perform any of these processing and presentation functions and conclude that the MHC class I antigen processing and presentation pathway is functional in neonatal dendritic cells and hence may not account for the diminished control of pathogens
    • …
    corecore