6 research outputs found

    The rare C9 P167S risk variant for age-related macular degeneration increases polymerization of the terminal component of the complement cascade

    Get PDF
    Age-related macular degeneration (AMD) is a complex neurodegenerative eye disease with behavioral and genetic etiology and is the leading cause of irreversible vision loss among elderly Caucasians. Functionally significant genetic variants in the alternative pathway of complement have been strongly linked to disease. More recently, a rare variant in the terminal pathway of complement has been associated with increased risk, Complement component 9 (C9) P167S. To assess the functional consequence of this variant, C9 levels were measured in two independent cohorts of AMD patients. In both cohorts, it was demonstrated that the P167S variant was associated with low C9 plasma levels. Further analysis showed that patients with advanced AMD had elevated sC5b-9 compared to those with non-advanced AMD, although this was not associated with the P167S polymorphism. Electron microscopy of membrane attack complexes (MACs) generated using recombinantly produced wild type or P167S C9 demonstrated identical MAC ring structures. In functional assays, the P167S variant displayed a higher propensity to polymerize and a small increase in its ability to induce hemolysis of sheep erythrocytes when added to C9-depleted serum. The demonstration that this C9 P167S AMD risk polymorphism displays increased polymerization and functional activity provides a rationale for the gene therapy trials of sCD59 to inhibit the terminal pathway of complement in AMD that are underway

    Fluvastatin treatment inhibits leucocyte adhesion and extravasation in models of complement-mediated acute inflammation

    No full text
    Complement activation plays a relevant role in the development of tissue damage under inflammatory conditions, and clinical and experimental observations emphasize its contribution to inflammatory vasculitides. Statins have recently been shown to reduce cardiovascular morbidity independently of plasma cholesterol lowering and in vitro studies support a direct anti-inflammatory action of these drugs. The aim of this study was to verify the in vivo effect of fluvastatin on complement-mediated acute peritoneal inflammation. The effect of oral treatment with fluvastatin was investigated in normo-cholesterolaemic rats that received intraperitoneal injection of either yeast-activated rat serum (Y-act RS) or lipopolysaccharide to induce peritoneal inflammation monitored by the number of PMN recruited in peritoneal fluid washes. In addition, vascular adherence and extravasation of leucocytes were evaluated by direct videomicroscopy examination on mesentery postcapillary venules topically exposed to Y-act RS. The number of PMN in the peritoneal washes of rats treated with fluvastatin was 38% lower than that of untreated animals (P < 0·05) 12 h after LPS injection, and was even lower (56%) in rats treated with Y-act RS already 8 h after injection (P < 0·02). Firm adhesion to endothelium and extravasation of leucocytes evaluated under direct videomicroscopy observation were significantly inhibited in fluvastatin treated rats (77% and 72%, respectively; P < 0·01), 120 min after treatment with Y-act RS. Our results demonstrate that fluvastatin inhibits in vivo complement-dependent acute peritoneal inflammation and suggest a role for statins in preventing the inflammatory flares usually associated with complement activation in chronic diseases, such as SLE or rheumatoid arthritis

    Comparison of the suppressive effects of soluble CR1 and C5a receptor antagonist in acute arthritis induced in rats by blocking of CD59

    No full text
    We investigated the effects of suppression of complement activation at C3 level and inhibition of C5a on acute synovitis in rats. Acute synovitis was induced in Wistar rats by intra-articular (i.a.) injection into one knee of 0.3 mg of MoAb 6D1 (anti-rat CD59 antibody). In the treatment groups, soluble CR1 (sCR1) or C5a receptor (C5aR) antagonist was administered intra-articularly or intravenously and effects on the course of the acute synovitis were monitored. Synovitis induced by 6D1 was characterized by joint swelling, thickening of synovial tissue, cellular infiltration and deposition of membrane attack complex (MAC) on the synovial surface. Neither inflammatory change nor MAC deposition was found in rats which received an i.a. injection of sCR1 to suppress complement activity in the joint. Intra-articular injection of sCR1 did not reduce plasma complement activity. Intravenous administration of sCR1 suppressed plasma complement activity but had no effect on the course of the arthritis and synovitis with MAC deposition was observed. Neither i.a. nor i.v. injection of C5aR antagonist had any suppressive effects on inflammatory change or MAC deposition in synovium. The data show that inflammatory change induced by 6D1 was mediated by local complement activation and was not accompanied by systemic complement activation. C5a generation was not responsible for the observed inflammation, suggesting that other complement activation products, possibly MAC, mediate the inflammatory change observed in this model of acute synovitis in rats

    Complement and autoimmunity

    No full text
    corecore