139 research outputs found
Investigating Snake-Venom-Induced Dermonecrosis and Inflammation Using an Ex Vivo Human Skin Model
Snakebite envenoming is a neglected tropical disease that causes >100,000 deaths and >400,000 cases of morbidity annually. Despite the use of mouse models, severe local envenoming, defined by morbidity-causing local tissue necrosis, remains poorly understood, and human-tissue responses are ill-defined. Here, for the first time, an ex vivo, non-perfused human skin model was used to investigate temporal histopathological and immunological changes following subcutaneous injections of venoms from medically important African vipers (Echis ocellatus and Bitis arietans) and cobras (Naja nigricollis and N. haje). Histological analysis of venom-injected ex vivo human skin biopsies revealed morphological changes in the epidermis (ballooning degeneration, erosion, and ulceration) comparable to clinical signs of local envenoming. Immunostaining of these biopsies confirmed cell apoptosis consistent with the onset of necrosis. RNA sequencing, multiplex bead arrays, and ELISAs demonstrated that venom-injected human skin biopsies exhibited higher rates of transcription and expression of chemokines (CXCL5, MIP1-ALPHA, RANTES, MCP-1, and MIG), cytokines (IL-1β, IL-1RA, G-CSF/CSF-3, and GM-CSF), and growth factors (VEGF-A, FGF, and HGF) in comparison to non-injected biopsies. To investigate the efficacy of antivenom, SAIMR Echis monovalent or SAIMR polyvalent antivenom was injected one hour following E. ocellatus or N. nigricollis venom treatment, respectively, and although antivenom did not prevent venom-induced dermal tissue damage, it did reduce all pro-inflammatory chemokines, cytokines, and growth factors to normal levels after 48 h. This ex vivo skin model could be useful for studies evaluating the progression of local envenoming and the efficacy of snakebite treatments
Investigating Snake-Venom-Induced Dermonecrosis and Inflammation Using an Ex Vivo Human Skin Model
Snakebite envenoming is a neglected tropical disease that causes >100,000 deaths and >400,000 cases of morbidity annually. Despite the use of mouse models, severe local envenoming, defined by morbidity-causing local tissue necrosis, remains poorly understood, and human-tissue responses are ill-defined. Here, for the first time, an ex vivo, non-perfused human skin model was used to investigate temporal histopathological and immunological changes following subcutaneous injections of venoms from medically important African vipers (Echis ocellatus and Bitis arietans) and cobras (Naja nigricollis and N. haje). Histological analysis of venom-injected ex vivo human skin biopsies revealed morphological changes in the epidermis (ballooning degeneration, erosion, and ulceration) comparable to clinical signs of local envenoming. Immunostaining of these biopsies confirmed cell apoptosis consistent with the onset of necrosis. RNA sequencing, multiplex bead arrays, and ELISAs demonstrated that venom-injected human skin biopsies exhibited higher rates of transcription and expression of chemokines (CXCL5, MIP1-ALPHA, RANTES, MCP-1, and MIG), cytokines (IL-1β, IL-1RA, G-CSF/CSF-3, and GM-CSF), and growth factors (VEGF-A, FGF, and HGF) in comparison to non-injected biopsies. To investigate the efficacy of antivenom, SAIMR Echis monovalent or SAIMR polyvalent antivenom was injected one hour following E. ocellatus or N. nigricollis venom treatment, respectively, and although antivenom did not prevent venom-induced dermal tissue damage, it did reduce all pro-inflammatory chemokines, cytokines, and growth factors to normal levels after 48 h. This ex vivo skin model could be useful for studies evaluating the progression of local envenoming and the efficacy of snakebite treatments.</jats:p
Diet and lifestyle behaviour disruption related to the pandemic was varied and bidirectional among US and UK adults participating in the ZOE COVID Study
Evidence of the impact of the COVID-19 pandemic on health behaviours in the general population is limited. In this retrospective longitudinal study including UK and US participants, we collected diet and lifestyle data pre-pandemic (896,286) and peri-pandemic (291,871) using a mobile health app, and we computed a bidirectional health behaviour disruption index. Disruption of health behaviour was higher in younger, female and socio-economically deprived participants. Loss in body weight was greater in highly disrupted individuals than in those with low disruption. There were large inter-individual changes observed in 46 health and diet behaviours measured peri-pandemic compared with pre-pandemic, but no mean change in the total population. Individuals most adherent to less healthy pre-pandemic health behaviours improved their diet quality and weight compared with those reporting healthier pre-pandemic behaviours, irrespective of relative deprivation; therefore, for a proportion of the population, the pandemic may have provided an impetus to improve health behaviours. Public policies to tackle health inequalities widened by the pandemic should continue to prioritize diet and physical activity for all, as well as more targeted approaches to support younger females and those living in economically deprived areas
Early and Middle Holocene Hunter-Gatherer Occupations in Western Amazonia: The Hidden Shell Middens
We report on previously unknown early archaeological sites in the Bolivian lowlands, demonstrating for the first time early and middle Holocene human presence in western Amazonia. Multidisciplinary research in forest islands situated in seasonally-inundated savannahs has revealed stratified shell middens produced by human foragers as early as 10,000 years ago, making them the oldest archaeological sites in the region. The absence of stone resources and partial burial by recent alluvial sediments has meant that these kinds of deposits have, until now, remained unidentified. We conducted core sampling, archaeological excavations and an interdisciplinary study of the stratigraphy and recovered materials from three shell midden mounds. Based on multiple lines of evidence, including radiocarbon dating, sedimentary proxies (elements, steroids and black carbon), micromorphology and faunal analysis, we demonstrate the anthropogenic origin and antiquity of these sites. In a tropical and geomorphologically active landscape often considered challenging both for early human occupation and for the preservation of hunter-gatherer sites, the newly discovered shell middens provide evidence for early to middle Holocene occupation and illustrate the potential for identifying and interpreting early open-air archaeological sites in western Amazonia. The existence of early hunter-gatherer sites in the Bolivian lowlands sheds new light on the region's past and offers a new context within which the late Holocene "Earthmovers" of the Llanos de Moxos could have emerged. © 2013 Lombardo et al
Modest effects of dietary supplements during the COVID-19 pandemic: Insights from 445 850 users of the COVID-19 Symptom Study app
OBJECTIVE: Dietary supplements may ameliorate SARS-CoV-2 infection, although scientific evidence to support such a role is lacking. We investigated whether users of the COVID-19 Symptom Study app who regularly took dietary supplements were less likely to test positive for SARS-CoV-2 infection. DESIGN: App-based community survey. SETTING: 445 850 subscribers of an app that was launched to enable self-reported information related to SARS-CoV-2 infection for use in the general population in the UK (n=372 720), the USA (n=45 757) and Sweden (n=27 373). MAIN EXPOSURE: Self-reported regular dietary supplement usage (constant use during previous 3 months) in the first waves of the pandemic up to 31 July 2020. MAIN OUTCOMES MEASURES: SARS-CoV-2 infection confirmed by viral RNA reverse transcriptase PCR test or serology test before 31 July 2020. RESULTS: In 372 720 UK participants (175 652 supplement users and 197 068 non-users), those taking probiotics, omega-3 fatty acids, multivitamins or vitamin D had a lower risk of SARS-CoV-2 infection by 14% (95% CI (8% to 19%)), 12% (95% CI (8% to 16%)), 13% (95% CI (10% to 16%)) and 9% (95% CI (6% to 12%)), respectively, after adjusting for potential confounders. No effect was observed for those taking vitamin C, zinc or garlic supplements. On stratification by sex, age and body mass index (BMI), the protective associations in individuals taking probiotics, omega-3 fatty acids, multivitamins and vitamin D were observed in females across all ages and BMI groups, but were not seen in men. The same overall pattern of association was observed in both the US and Swedish cohorts. CONCLUSION: In women, we observed a modest but significant association between use of probiotics, omega-3 fatty acid, multivitamin or vitamin D supplements and lower risk of testing positive for SARS-CoV-2. We found no clear benefits for men nor any effect of vitamin C, garlic or zinc. Randomised controlled trials are required to confirm these observational findings before any therapeutic recommendations can be made
Propionibacterium acnes CAMP Factor and Host Acid Sphingomyelinase Contribute to Bacterial Virulence: Potential Targets for Inflammatory Acne Treatment
) permits the bacteria to spread and become in contact with various skin and immune cells.-induced inflammation. CAMP factor may hijack host ASMase to amplify bacterial virulence to degrade and invade host cells. This work has identified both CAMP factor and ASMase as potential molecular targets for the development of drugs and vaccines against acne vulgaris
Alternative pathway dysregulation in tissues drives sustained complement activation and predicts outcome across the disease course in COVID-19
Complement, a critical defence against pathogens, has been implicated as a driver of pathology in COVID-19. Complement activation products are detected in plasma and tissues and complement blockade considered for therapy. To delineate roles of complement in immunopathogenesis, we undertook the largest comprehensive study of complement in an COVID-19 to date, a comprehensive profiling of 16 complement biomarkers, including key components, regulators and activation products, in 966 plasma samples from 682 hospitalised COVID-19 patients collected across the hospitalisation period as part of the UK ISARIC4C study. Unsupervised clustering of complement biomarkers mapped to disease severity and supervised machine learning identified marker sets in early samples that predicted peak severity. Compared to heathy controls, complement proteins and activation products (Ba, iC3b, terminal complement complex) were significantly altered in COVID-19 admission samples in all severity groups. Elevated alternative pathway activation markers (Ba and iC3b) and decreased alternative pathway regulator (properdin) in admission samples associated with more severe disease and risk of death. Levels of most complement biomarkers were reduced in severe disease, consistent with consumption and tissue deposition. Latent class mixed modelling and cumulative incidence analysis identified the trajectory of increase of Ba to be a strong predictor of peak COVID-19 disease severity and death. The data demonstrate that early-onset, uncontrolled activation of complement, driven by sustained and progressive amplification through the alternative pathway amplification loop is a ubiquitous feature of COVID-19, further exacerbated in severe disease. These findings provide novel insights into COVID-19 immunopathogenesis and inform strategies for therapeutic intervention
Implementation of corticosteroids in treatment of COVID-19 in the ISARIC WHO Clinical Characterisation Protocol UK: prospective, cohort study
Background: Dexamethasone was the first intervention proven to reduce mortality in patients with COVID-19 being treated in hospital. We aimed to evaluate the adoption of corticosteroids in the treatment of COVID-19 in the UK after the RECOVERY trial publication on June 16, 2020, and to identify discrepancies in care. Methods: We did an audit of clinical implementation of corticosteroids in a prospective, observational, cohort study in 237 UK acute care hospitals between March 16, 2020, and April 14, 2021, restricted to patients aged 18 years or older with proven or high likelihood of COVID-19, who received supplementary oxygen. The primary outcome was administration of dexamethasone, prednisolone, hydrocortisone, or methylprednisolone. This study is registered with ISRCTN, ISRCTN66726260. Findings: Between June 17, 2020, and April 14, 2021, 47 795 (75·2%) of 63 525 of patients on supplementary oxygen received corticosteroids, higher among patients requiring critical care than in those who received ward care (11 185 [86·6%] of 12 909 vs 36 415 [72·4%] of 50 278). Patients 50 years or older were significantly less likely to receive corticosteroids than those younger than 50 years (adjusted odds ratio 0·79 [95% CI 0·70–0·89], p=0·0001, for 70–79 years; 0·52 [0·46–0·58], p80 years), independent of patient demographics and illness severity. 84 (54·2%) of 155 pregnant women received corticosteroids. Rates of corticosteroid administration increased from 27·5% in the week before June 16, 2020, to 75–80% in January, 2021. Interpretation: Implementation of corticosteroids into clinical practice in the UK for patients with COVID-19 has been successful, but not universal. Patients older than 70 years, independent of illness severity, chronic neurological disease, and dementia, were less likely to receive corticosteroids than those who were younger, as were pregnant women. This could reflect appropriate clinical decision making, but the possibility of inequitable access to life-saving care should be considered. Funding: UK National Institute for Health Research and UK Medical Research Council
Quantifying neutralising antibody responses against SARS-CoV-2 in dried blood spots (DBS) and paired sera
The ongoing SARS-CoV-2 pandemic was initially managed by non-pharmaceutical interventions such as diagnostic testing, isolation of positive cases, physical distancing and lockdowns. The advent of vaccines has provided crucial protection against SARS-CoV-2. Neutralising antibody (nAb) responses are a key correlate of protection, and therefore measuring nAb responses is essential for monitoring vaccine efficacy. Fingerstick dried blood spots (DBS) are ideal for use in large-scale sero-surveillance because they are inexpensive, offer the option of self-collection and can be transported and stored at ambient temperatures. Such advantages also make DBS appealing to use in resource-limited settings and in potential future pandemics. In this study, nAb responses in sera, venous blood and fingerstick blood stored on filter paper were measured. Samples were collected from SARS-CoV-2 acutely infected individuals, SARS-CoV-2 convalescent individuals and SARS-CoV-2 vaccinated individuals. Good agreement was observed between the nAb responses measured in eluted DBS and paired sera. Stability of nAb responses was also observed in sera stored on filter paper at room temperature for 28Â days. Overall, this study provides support for the use of filter paper as a viable sample collection method to study nAb responses.</p
- …