14,132 research outputs found
Automatic offensive language detection from Twitter data using machine learning and feature selection of metadata
The popularity of social networks has only increased
in recent years. In theory, the use of social media was proposed
so we could share our views online, keep in contact with loved
ones or share good moments of life. However, the reality is
not so perfect, so you have people sharing hate speech-related
messages, or using it to bully specific individuals, for instance,
or even creating robots where their only goal is to target specific
situations or people. Identifying who wrote such text is not easy
and there are several possible ways of doing it, such as using
natural language processing or machine learning algorithms
that can investigate and perform predictions using the metadata associated with it. In this work, we present an initial
investigation of which are the best machine learning techniques
to detect offensive language in tweets. After an analysis of the
current trend in the literature about the recent text classification
techniques, we have selected Linear SVM and Naive Bayes
algorithms for our initial tests. For the preprocessing of data,
we have used different techniques for attribute selection that
will be justified in the literature section. After our experiments,
we have obtained 92% of accuracy and 95% of recall to detect
offensive language with Naive Bayes and 90% of accuracy and
92% of recall with Linear SVM. From our understanding, these
results overcome our related literature and are a good indicative
of the importance of the data description approach we have used
Zero-temperature TAP equations for the Ghatak-Sherrington model
The zero-temperature TAP equations for the spin-1 Ghatak-Sherrington model
are investigated. The spin-glass energy density (ground state) is determined as
a function of the anisotropy crystal field for a large number of spins.
This allows us to locate a first-order transition between the spin-glass and
paramagnetic phases within a good accuracy. The total number of solutions is
also determined as a function of .Comment: 11 pages, 2 ps figures include
Effects of Random Biquadratic Couplings in a Spin-1 Spin-Glass Model
A spin-1 model, appropriated to study the competition between bilinear
(J_{ij}S_{i}S_{j}) and biquadratic (K_{ij}S_{i}^{2}S_{j}^{2}) random
interactions, both of them with zero mean, is investigated. The interactions
are infinite-ranged and the replica method is employed. Within the
replica-symmetric assumption, the system presents two phases, namely,
paramagnetic and spin-glass, separated by a continuous transition line. The
stability analysis of the replica-symmetric solution yields, besides the usual
instability associated with the spin-glass ordering, a new phase due to the
random biquadratic couplings between the spins.Comment: 16 pages plus 2 ps figure
Managing Access to Service Providers in Federated Identity Environments: A Case Study in a Cloud Storage Service
© 2015 IEEE. Currently the diversity of services, which are adhering to Identity Federation, has raised new challenges in the area. Increasingly, service providers need to control the access to their resources by users from the federation as, even though the user is authenticated by the federation, its access to resources cannot be taken for granted. Each Service Provider (SP) of a federation implements their own access control mechanism. Moreover, SPs might need to allow different access control granularity. For instance, all users from a particular Identity Provider (IdP) may access the resources due to some financial agreement. On the other hand, it might be the case that only specific users, or groups of users, have access to the resources. This paper proposes a solution to this problem through a hierarchical authorization system. Our approach, which can be customized to different SPs, allows the SP administrator to manage which IdPs, or users, have access to the provided resources. In order to demonstrate the feasibility of our approach, we present a case study in the context of a cloud storage solution
The formation of voids in a universe with cold dark matter and a cosmological constant
A spherical Lagrangian hydrodynamical code has been written to study the
formation of cosmological structures in the early Universe. In this code we
take into account the presence of collisionless non-baryonic cold dark matter
(CDM), the cosmological constant and a series of physical processes present
during and after the recombination era, such as photon drag resulting from the
cosmic background radiation and hydrogen molecular production. We follow the
evolution of the structure since the recombination era until the present epoch.
As an application of this code we study the formation of voids starting from
negative density perturbations which evolved during and after the recombination
era. We analyse a set of COBE-normalized models, using different spectra to see
their influence on the formation of voids. Our results show that large voids
with diameters ranging from 10h^{-1} Mpc up to 50h^{-1} Mpc can be formed in a
universe model dominated by the cosmological constant (\Omega_\Lambda ~ 0.8).
This particular scenario is capable of forming large and deep empty regions
(with density contrasts \delta < -0.6). Our results also show that the physical
processes acting on the baryonic matter produce a transition region where the
radius of the dark matter component is greater than the baryonic void radius.
The thickness of this transition region ranges from about tens of kiloparsecs
up to a few megaparsecs, depending on the spectrum considered. Putative objects
formed near voids and within the transition region would have a different
amount of baryonic/dark matter when compared with \Omega_b/\Omega_d. If one
were to use these galaxies to determine, by dynamical effects or other
techniques, the quantity of dark matter present in the Universe, the result
obtained would be only local and not representative of the Universe as a whole.Comment: MNRAS (in press); 9 pages, no figure
Operations strategy and cost management
In the globalized world, companies seek for new operations strategies to ensure world corporate success. This article analyzes how the cost management models - both traditional and activity-based -, aid the planning and management of corporate globalized operations. The efficacy of the models application depends on their alignment with the competitive strategy. Companies must evaluate the nature of the competition and its competitive priorities; they should then define the necessary and sufficient dependence level on costs information. In this article, three dependence levels are presented: operational, decision support and strategic control. The result of the research shows the importance of alignment between the cost management model and the competitive strategy for corporate success, and confirms the adequacy of the activity-based costing model as a supporting tool for decision taking in a global strategy. Case studies in world class companies in Brazil are presented
- …