353 research outputs found

    Lamb age has little impact on eating quality

    Get PDF
    There is an industry wide perception that new season lamb has better eating quality than old season lamb. This study aims to identify differences in consumer eating quality scores between two age classes in lamb. Consumer eating quality scores from eight cuts across the carcass were evaluated from new season (NS; n = 120; average age = 240 days) and old season lambs (OS; n = 121; average age = 328 days), sourced from four different flocks. Cuts were grilled (loin, topside, outside, knuckle and rump) or roasted (leg, shoulder, rack) and scored by untrained consumers for tenderness, juiciness, liking of flavour and overall liking. There was no difference in eating quality scores between the two age classes for the loin, leg, shoulder and rack. This was similarly shown in the topside with the exception of juiciness scores where NS lambs were higher than OS lambs. There was also a lack of age difference in the outside with the exception of flock 3 where NS lambs scored higher than OS lambs for all sensory traits. Across all sensory traits, OS lambs received on average 2.8 scores lower for the knuckle and 3.1 scores lower for the rump compared to NS lambs. These results show little difference in eating quality between NS and OS lamb, and highlight the potential to develop high quality OS or "autumn lamb" products, with a similar premium price at retail as NS lambs

    Novel glasses for optical-fibre device applications

    No full text
    This paper reviews current research activities on novel multicomponent (soft) glasses for optical-fibre devices, underway at the Optoelectronics Research Centre, University of Southampton. Compound glasses are crucial for a variety of important optical-fibre devices, including 1.3µm optical fibre amplifiers, up-conversion UV and visible fibre lasers, long-wavelength and high-power fibre lasers. Recent results and progress on silicate, phosphate, germanate, tellurite, fluoride, sulphide and chloride glasses and fibres are presented, together with device performance and application. (A proposed invited talk

    Quantifying similarity in animal vocal sequences: Which metric performs best?

    Get PDF
    1. Many animals communicate using sequences of discrete acoustic elements which can be complex, vary in their degree of stereotypy, and are potentially open-ended. Variation in sequences can provide important ecological, behavioural, or evolutionary information about the structure and connectivity of populations, mechanisms for vocal cultural evolution, and the underlying drivers responsible for these processes. Various mathematical techniques have been used to form a realistic approximation of sequence similarity for such tasks. 2. Here, we use both simulated and empirical datasets from animal vocal sequences (rock hyrax, Procavia capensis; humpback whale, Megaptera novaeangliae; bottlenose dolphin, Tursiops truncatus; and Carolina chickadee, Poecile carolinensis) to test which of eight sequence analysis metrics are more likely to reconstruct the information encoded in the sequences, and to test the fidelity of estimation of model parameters, when the sequences are assumed to conform to particular statistical models. 3. Results from the simulated data indicated that multiple metrics were equally successful in reconstructing the information encoded in the sequences of simulated individuals (Markov chains, n-gram models, repeat distribution, and edit distance), and data generated by different stochastic processes (entropy rate and n-grams). However, the string edit (Levenshtein) distance performed consistently and significantly better than all other tested metrics (including entropy, Markov chains, n-grams, mutual information) for all empirical datasets, despite being less commonly used in the field of animal acoustic communication. 4. The Levenshtein distance metric provides a robust analytical approach that should be considered in the comparison of animal acoustic sequences in preference to other commonly employed techniques (such as Markov chains, hidden Markov models, or Shannon entropy). The recent discovery that non-Markovian vocal sequences may be more common in animal communication than previously thought, provides a rich area for future research that requires non-Markovian based analysis techniques to investigate animal grammars and potentially the origin of human language.We thank Melinda Rekdahl, Todd Freeberg and his graduate students, Amiyaal Ilany, Elizabeth Hobson, and Jessica Crance for providing comments of on a previous version of this manuscript. We thank Mike Noad, Melinda Rekdahl, and Claire Garrigue for assistance with humpback whale song collection and initial categorisation of the song, Vincent Janik and Laela Sayigh for assistance with signature whistle collection, Todd Freeberg with chickadee recordings, and Eli Geffen and Amiyaal Ilany for assistance with hyrax song collection and analysis. E.C.G is supported by a Newton International Fellowship. Part of this work was conducted while E.C.G. was supported by a National Research Council (National Academy of Sciences) Postdoctoral Fellowship at the National Marine Mammal Laboratory, AFSC, NMFS, NOAA. The findings and conclusions in this paper are those of the authors and do not necessarily represent the views of the National Marine Fisheries Service. We would also like to thank Randall Wells and the Sarasota Dolphin Research Program for the opportunity to record the Sarasota dolphins, where data were collected under a series of National Marine Fisheries Service Scientific Research Permits issued to Randall Wells. A.K. is supported by the Herchel Smith Postdoctoral Fellowship Fund. Part of this work was conducted while A.K. was a Postdoctoral Fellow at the National Institute for Mathematical and Biological Synthesis, an Institute sponsored by the National Science Foundation through NSF Award #DBI-1300426, with additional support from The University of Tennessee, Knoxville.This is the author accepted manuscript. The final version is available from Wiley via http://dx.doi.org/10.1111/2041-210X.1243

    Rare-earth doped chalcogenide glass fibre laser

    No full text
    We report on the first laser action in a rare-earth doped chalcogenide glass fibre. Laser action at 1080nm was obtained in a 22mm long gallium lanthanum sulphide glass fibre with a neodymium doped core, fabricated by the rod-in-tube technique. The laser was pumped continuous wave with a Ti:sapphire laser at 815nm and showed a self-pulsing behaviour

    Spectral properties of Er<sup>3+</sup>-doped chalcogenide glasses

    No full text
    Lanthanum sulphides glasses formed with sufficient proportions of Ga2S3 constitute a very convenient matrix for rare earth sulphides, and Pr3+-doped Ga2S3:La2S3 (GLS) glasses have been recognized as one of the most promising candidates for fibre amplifiers operating at a wavelength of 1.3µm. In this report, the spectral properties of chalcogenide glass of the molar composition 0.7Ga2S3:0.3La2S3 doped with Er3+ are presented and discussed. Emission and absorption spectra and lifetimes of energy levels have been measured. The 2.7µm emission, as shown below, has been observed from chalcogenide glass for the first time. Radiative and non-radiative transition rates are calculated and compared with the measured lifetimes of interesting energy levels

    What can comparative genomics tell us about species concepts in the genus Aspergillus?

    Get PDF
    Understanding the nature of species” boundaries is a fundamental question in evolutionary biology. The availability of genomes from several species of the genus Aspergillus allows us for the first time to examine the demarcation of fungal species at the whole-genome level. Here, we examine four case studies, two of which involve intraspecific comparisons, whereas the other two deal with interspecific genomic comparisons between closely related species. These four comparisons reveal significant variation in the nature of species boundaries across Aspergillus. For example, comparisons between A. fumigatus and Neosartorya fischeri (the teleomorph of A. fischerianus) and between A. oryzae and A. flavus suggest that measures of sequence similarity and species-specific genes are significantly higher for the A. fumigatus - N. fischeri pair. Importantly, the values obtained from the comparison between A. oryzae and A. flavus are remarkably similar to those obtained from an intra-specific comparison of A. fumigatus strains, giving support to the proposal that A. oryzae represents a distinct ecotype of A. flavus and not a distinct species. We argue that genomic data can aid Aspergillus taxonomy by serving as a source of novel and unprecedented amounts of comparative data, as a resource for the development of additional diagnostic tools, and finally as a knowledge database about the biological differences between strains and species

    Reproducibility of differential proteomic technologies in CPTAC fractionated xenografts

    Get PDF
    The NCI Clinical Proteomic Tumor Analysis Consortium (CPTAC) employed a pair of reference xenograft proteomes for initial platform validation and ongoing quality control of its data collection for The Cancer Genome Atlas (TCGA) tumors. These two xenografts, representing basal and luminal-B human breast cancer, were fractionated and analyzed on six mass spectrometers in a total of 46 replicates divided between iTRAQ and label-free technologies, spanning a total of 1095 LC-MS/MS experiments. These data represent a unique opportunity to evaluate the stability of proteomic differentiation by mass spectrometry over many months of time for individual instruments or across instruments running dissimilar workflows. We evaluated iTRAQ reporter ions, label-free spectral counts, and label-free extracted ion chromatograms as strategies for data interpretation (source code is available from http://homepages.uc.edu/~wang2x7/Research.htm). From these assessments, we found that differential genes from a single replicate were confirmed by other replicates on the same instrument from 61 to 93% of the time. When comparing across different instruments and quantitative technologies, using multiple replicates, differential genes were reproduced by other data sets from 67 to 99% of the time. Projecting gene differences to biological pathways and networks increased the degree of similarity. These overlaps send an encouraging message about the maturity of technologies for proteomic differentiation

    Regression and the Maternal in the History of Psychoanalysis, 1900-1957

    Get PDF
    This paper examines the history of the concept of ‘regression’ as it was perceived by Sandor Ferenczi and some of his followers in the first half of the twentieth century. The first part provides a short history of the notion of ‘regression’ from the late nineteenth century to Ferenczi's work in the 1920s and 1930s. The second and third parts of the paper focus on two other thinkers on regression, who worked in Britain, under the influence of the Ferenczian paradigm – the interwar Scottish psychiatrist, Ian D. Suttie; and the British-Hungarian psychoanalyst, and Ferenczi's most important pupil, Michael Balint. Rather than a descriptive term which comes to designate a pathological mental stage, Ferenczi understood ‘regression’ as a much more literal phenomenon. For him, the mental desire to go backwards in time is a universal one, and a consequence of an inevitable traumatic separation from the mother in early childhood, which has some deep personal and cultural implications. The paper aims to show some close affinities between the preoccupation of some psychoanalysts with ‘regression’, and the growing interest in social and cultural aspects of ‘motherhood’ and ‘the maternal role’ in mid-twentieth-century British society
    corecore