1,471 research outputs found
Recommended from our members
PREPARATION OF CU-DOPED GLOW DISCHARGE POLYMER COATINGS FOR ICF APPLICATIONS
OAK-B135 Copper doped polymer shells can provide a very useful diagnostic for fast ignition experiments currently being performed at various laboratories around the world. The low concentration copper dopant acts as an efficient x-ray source providing information on the physics of fast ignition. They have developed copper doped glow discharge (GDP) coatings suitable for such purposes. Copper acetylacetonate (CuAcAC), a solid at room temperature, was used in a heated jacket as the dopant source. They used this technique to fabricate thin ({approx} 5-7 {micro}m) GDP shells doped with {approx} 1 at% copper through the depolymerizable mandrel process for fast ignition experiments. The details of the experimental set up and the range and limitations of the technique are discussed
On the practicality of time-optimal two-qubit Hamiltonian simulation
What is the time-optimal way of using a set of control Hamiltonians to obtain
a desired interaction? Vidal, Hammerer and Cirac [Phys. Rev. Lett. 88 (2002)
237902] have obtained a set of powerful results characterizing the time-optimal
simulation of a two-qubit quantum gate using a fixed interaction Hamiltonian
and fast local control over the individual qubits. How practically useful are
these results? We prove that there are two-qubit Hamiltonians such that
time-optimal simulation requires infinitely many steps of evolution, each
infinitesimally small, and thus is physically impractical. A procedure is given
to determine which two-qubit Hamiltonians have this property, and we show that
almost all Hamiltonians do. Finally, we determine some bounds on the penalty
that must be paid in the simulation time if the number of steps is fixed at a
finite number, and show that the cost in simulation time is not too great.Comment: 9 pages, 2 figure
Spin squeezing and pairwise entanglement for symmetric multiqubit states
We show that spin squeezing implies pairwise entanglement for arbitrary
symmetric multiqubit states. If the squeezing parameter is less than or equal
to 1, we demonstrate a quantitative relation between the squeezing parameter
and the concurrence for the even and odd states. We prove that the even states
generated from the initial state with all qubits being spin down, via the
one-axis twisting Hamiltonian, are spin squeezed if and only if they are
pairwise entangled. For the states generated via the one-axis twisting
Hamiltonian with an external transverse field for any number of qubits greater
than 1 or via the two-axis counter-twisting Hamiltonian for any even number of
qubits, the numerical results suggest that such states are spin squeezed if and
only if they are pairwise entangled.Comment: 6 pages. Version 3: Small corrections were mad
RhierBAPS: An R implementation of the population clustering algorithm hierBAPS [version 1; referees: 2 approved]
Identifying structure in collections of sequence data sets remains a common problem in genomics. hierBAPS, a popular algorithm for identifying population structure in haploid genomes, has previously only been available as a MATLAB binary. We provide an R implementation which is both easier to install and use, automating the entire pipeline. Additionally, we allow for the use of multiple processors, improve on the default settings of the algorithm, and provide an interface with the ggtree library to enable informative illustration of the clustering results. Our aim is that this package aids in the understanding and dissemination of the method, as well as enhancing the reproducibility of population structure analyses
Metamaterials proposed as perfect magnetoelectrics
Magnetoelectric susceptibility of a metamaterial built from split ring
resonators have been investigated both experimentally and within an equivalent
circuit model. The absolute values have been shown to exceed by two orders of
magnitude that of classical magnetoelectric materials. The metamaterial
investigated reaches the theoretically predicted value of the magnetoelectric
susceptibility which is equal to the geometric average of the electric and
magnetic susceptibilities.Comment: 5 pages, 3 figure
Bayesian classification of vegetation types with Gaussian mixture density fitting to indicator values.
Question: Is it possible to mathematically classify relevés into vegetation types on the basis of their average indicator values, including the uncertainty of the classification? Location: The Netherlands. Method: A large relevé database was used to develop a method for predicting vegetation types based on indicator values. First, each relevé was classified into a phytosociological association on the basis of its species composition. Additionally, mean indicator values for moisture, nutrients and acidity were computed for each relevé. Thus, the position of each classified relevé was obtained in a three-dimensional space of indicator values. Fitting the data to so called Gaussian Mixture Models yielded densities of associations as a function of indicator values. Finally, these density functions were used to predict the Bayesian occurrence probabilities of associations for known indicator values. Validation of predictions was performed by using a randomly chosen half of the database for the calibration of densities and the other half for the validation of predicted associations. Results and Conclusions: With indicator values, most relevés were classified correctly into vegetation types at the association level. This was shown using confusion matrices that relate (1) the number of relevés classified into associations based on species composition to (2) those based on indicator values. Misclassified relevés belonged to ecologically similar associations. The method seems very suitable for predictive vegetation models
Hypogene Calcitization: Evaporite Diagenesis in the Western Delaware Basin
Evaporite calcitization within the Castile Formation of the Delaware Basin is more widespread and diverse than originally recognized. Coupled field and GIS studies have identified more than 1000 individual occurrences of calcitization within the Castile Formation outcrop area, which includes both calcitized masses (limestone buttes) and laterally extensive calcitized horizons (limestone sheets). Both limestone buttes and sheets commonly contain a central brecciated zone that we attribute to hypogene dissolution. Lithologic fabric of calcitized zones ranges from little alteration of original varved laminae to fabrics showing extensive laminae distortion as well as extensive vuggy and open cavernous porosity. Calcitization is most abundant in the western portion of the Castile outcrop region where surface denudation has been greatest. Calcitization often forms linear trends, indicating fluid migration along fractures, but also occurs as dense clusters indicating focused, ascending, hydrocarbon-rich fluids. Native sulfur, secondary tabular gypsum (i.e. selenite) and hypogene caves are commonly associated with clusters of calcitization. This assemblage suggests that calcium sulfate diagenesis within the Castile Formation is dominated by hypogene speleogemesis
Fabrication of electron beam generated, chirped, phase mask (1070 . 11 – 1070 . 66 nm) for fiber Bragg grating dispersion compensator
We report on the fabrication of a chirped, phase mask that was used to create a fiber Bragg grating(FBG)device for the compensation of chromatic dispersion in longhaul optical transmission networks.Electron beamlithography was used to expose the grating onto a resist-coated quartz plate. After etching, this phase mask was used to holographically expose an index grating into the fiber core [K. O. Hill, F. Bilodeau, D. C. Johnson, and J. Albert, Appl. Phys. Lett.62, 1035 (1993)]. The linear increase in the grating period, “chirp,” is only 0.55 nm over the 10 cm grating. This is too small to be defined by computer aided design and a digital deflection system. Instead, the chirp was incorporated by repeatedly rescaling the analog electronics used for field size calibration. Special attention must be paid to minimize any field stitching and exposure artifacts. This was done by using overlapping fields in a “voting” method. As a result, each grating line is exposed by the accumulation of three overlapping exposures at 1/3 dose. This translates any abrupt stitching error into a small but uniform change in the line-to-space ratio of the grating. The phase mask was used with the double-exposure photoprinting technique [K. O. Hill, F. Bilodeau, B. Malo, T. Kitagawa, S. Thériault, D. C. Johnson, J. Albert, and K. Takiguchi, Opt. Lett. 19, 1314 (1994)]: a KrF excimer laser holograp
- …