766 research outputs found
Homogeneous Fermion Superfluid with Unequal Spin Populations
For decades, the conventional view is that an s-wave BCS superfluid can not
support uniform spin polarization due to a gap in the quasiparticle
excitation spectrum. We show that this is an artifact of the dismissal of
quasiparticle interactions in the conventional approach at the
outset. Such interactions can cause triplet fluctuations in the ground state
and hence non-zero spin polarization at "magnetic field" . The
resulting ground state is a pairing state of quasiparticles on the ``BCS
vacuum". For sufficiently large , the spin polarization of at unitarity
has the simple form . Our study is motivated by the recent
experiments at Rice which found evidence of a homogenous superfluid state with
uniform spin polarization.Comment: 4 pages, 3 figure
Anomalous metamagnetism in the low carrier density Kondo lattice YbRh3Si7
We report complex metamagnetic transitions in single crystals of the new low
carrier Kondo antiferromagnet YbRh3Si7. Electrical transport, magnetization,
and specific heat measurements reveal antiferromagnetic order at T_N = 7.5 K.
Neutron diffraction measurements show that the magnetic ground state of
YbRh3Si7 is a collinear antiferromagnet where the moments are aligned in the ab
plane. With such an ordered state, no metamagnetic transitions are expected
when a magnetic field is applied along the c axis. It is therefore surprising
that high field magnetization, torque, and resistivity measurements with H||c
reveal two metamagnetic transitions at mu_0H_1 = 6.7 T and mu_0H_2 = 21 T. When
the field is tilted away from the c axis, towards the ab plane, both
metamagnetic transitions are shifted to higher fields. The first metamagnetic
transition leads to an abrupt increase in the electrical resistivity, while the
second transition is accompanied by a dramatic reduction in the electrical
resistivity. Thus, the magnetic and electronic degrees of freedom in YbRh3Si7
are strongly coupled. We discuss the origin of the anomalous metamagnetism and
conclude that it is related to competition between crystal electric field
anisotropy and anisotropic exchange interactions.Comment: 23 pages and 4 figures in the main text. 7 pages and 5 figures in the
supplementary materia
Performance Test Results of the NASA-457M v2 Hall Thruster
Performance testing of a second generation, 50 kW-class Hall thruster labeled NASA-457M v2 was conducted at the NASA Glenn Research Center. This NASA-designed thruster is an excellent candidate for a solar electric propulsion system that supports human exploration missions. Thruster discharge power was varied from 5 to 50 kW over discharge voltage and current ranges of 200 to 500 V and 15 to 100 A, respectively. Anode efficiencies varied from 0.56 to 0.71. The peak efficiency was similar to that of other state-of-the-art high power Hall thrusters, but outperformed these thrusters at lower discharge voltages. The 0.05 to 0.18 higher anode efficiencies of this thruster compared to its predecessor were primarily due to which of two stable discharge modes the thruster was operated. One stable mode was at low magnetic field strengths, which produced high anode efficiencies, and the other at high magnetic fields where its predecessor was operated. Cathode keeper voltages were always within 2.1 to 6.2 V and cathode voltages were within 13 V of tank ground during high anode efficiency operation. However, during operation at high magnetic fields, cathode-to-ground voltage magnitudes increased dramatically, exceeding 30 V, due to the high axial magnetic field strengths in the immediate vicinity of the centrally-mounted cathode. The peak thrust was 2.3 N and this occurred at a total thruster input power of 50.0 kW at a 500 V discharge voltage. The thruster demonstrated a thrust-to-power range of 76.4 mN/kW at low power to 46.1 mN/kW at full power, and a specific impulse range of 1420 to 2740 s. For a discharge voltage of 300 V, where specific impulses would be about 2000 s, thrust efficiencies varied from 0.57 to 0.63
Confront Holographic QCD with Regge Trajectories of vectors and axial-vectors
We derive the general 5-dimension metric structure of the system in
type II superstring theory, and demonstrate the physical meaning of the
parameters characterizing the 5-dimension metric structure of the
\textit{holographic} QCD model by relating them to the parameters describing
Regge trajectories. By matching the spectra of vector mesons with
deformed soft-wall model, we find that the spectra of vector mesons
can be described very well in the soft-wall model, i.e,
soft-wall model. We then investigate how well the soft-wall
model can describe the Regge trajectory of axial-vector mesons . We find
that the constant component of the 5-dimension mass square of axial-vector
mesons plays an efficient role to realize the chiral symmetry breaking in the
vacuum, and a small negative correction in the 5-dimension mass square is
helpful to realize the chiral symmetry restoration in high excitation states.Comment: 9 pages, 3 figure and 3 tables, one section adde
Self-consistent model of ultracold atomic collisions and Feshbach resonances in tight harmonic traps
We consider the problem of cold atomic collisions in tight traps, where the
absolute scattering length may be larger than the trap size. As long as the
size of the trap ground state is larger than a characteristic length of the van
der Waals potential, the energy eigenvalues can be computed self-consistently
from the scattering amplitude for untrapped atoms. By comparing with the exact
numerical eigenvalues of the trapping plus interatomic potentials, we verify
that our model gives accurate eigenvalues up to milliKelvin energies for single
channel s-wave scattering of Na atoms in an isotropic harmonic trap,
even when outside the Wigner threshold regime. Our model works also for
multi-channel scattering, where the scattering length can be made large due to
a magnetically tunable Feshbach resonance.Comment: 7 pages, 4 figures (PostScript), submitted to Physical Review
Transport Properties of the Quark-Gluon Plasma -- A Lattice QCD Perspective
Transport properties of a thermal medium determine how its conserved charge
densities (for instance the electric charge, energy or momentum) evolve as a
function of time and eventually relax back to their equilibrium values. Here
the transport properties of the quark-gluon plasma are reviewed from a
theoretical perspective. The latter play a key role in the description of
heavy-ion collisions, and are an important ingredient in constraining particle
production processes in the early universe. We place particular emphasis on
lattice QCD calculations of conserved current correlators. These Euclidean
correlators are related by an integral transform to spectral functions, whose
small-frequency form determines the transport properties via Kubo formulae. The
universal hydrodynamic predictions for the small-frequency pole structure of
spectral functions are summarized. The viability of a quasiparticle description
implies the presence of additional characteristic features in the spectral
functions. These features are in stark contrast with the functional form that
is found in strongly coupled plasmas via the gauge/gravity duality. A central
goal is therefore to determine which of these dynamical regimes the quark-gluon
plasma is qualitatively closer to as a function of temperature. We review the
analysis of lattice correlators in relation to transport properties, and
tentatively estimate what computational effort is required to make decisive
progress in this field.Comment: 54 pages, 37 figures, review written for EPJA and APPN; one parag.
added end of section 3.4, and one at the end of section 3.2.2; some Refs.
added, and some other minor change
Backward pion-nucleon scattering
A global analysis of the world data on differential cross sections and
polarization asymmetries of backward pion-nucleon scattering for invariant
collision energies above 3 GeV is performed in a Regge model. Including the
, , and trajectories, we
reproduce both angular distributions and polarization data for small values of
the Mandelstam variable , in contrast to previous analyses. The model
amplitude is used to obtain evidence for baryon resonances with mass below 3
GeV. Our analysis suggests a resonance with a mass of 2.83 GeV as
member of the trajectory from the corresponding Chew-Frautschi
plot.Comment: 12 pages, 16 figure
Two lectures on color superconductivity
The first lecture provides an introduction to the physics of color
superconductivity in cold dense quark matter. The main color superconducting
phases are briefly described and their properties are listed. The second
lecture covers recent developments in studies of color superconducting phases
in neutral and beta-equilibrated matter. The properties of gapless color
superconducting phases are discussed.Comment: 56 pages, 9 figures. Minor corrections and references added. Lectures
delivered at the IARD 2004 conference, Saas Fee, Switzerland, June 12 - 19,
2004, and at the Helmholtz International Summer School and Workshop on Hot
points in Astrophysics and Cosmology, JINR, Dubna, Russia, August 2 - 13,
200
- …