120 research outputs found

    Saturation induced coherence loss in coherent backscattering of light

    Full text link
    We use coherent backscattering (CBS) of light by cold Strontium atoms to study the mutual coherence of light waves in the multiple scattering regime. As the probe light intensity is increased, the atomic optical transition starts to be saturated. Nonlinearities and inelastic scattering then occur. In our experiment, we observe a strongly reduced enhancement factor of the coherent backscattering cone when the intensity of the probe laser is increased, indicating a partial loss of coherence in multiple scattering

    Decay Rate Distributions of Disordered Slabs and Application to Random Lasers

    Full text link
    We compute the distribution of the decay rates (also referred to as residues) of the eigenstates of a disordered slab from a numerical model. From the results of the numerical simulations, we are able to find simple analytical formulae that describe those results well. This is possible for samples both in the diffusive and in the localised regime. As example of a possible application, we investigate the lasing threshold of random lasers.Comment: 11 pages, 11 figure

    Localized Random Lasing Modes and a New Path for Observing Localization

    Full text link
    We demonstrate that a knowledge of the density-of-states and the eigenstates of a random system without gain, in conjunction with the frequency profile of the gain, can accurately predict the mode that will lase first. Its critical pumping rate can be also obtained. It is found that the shape of the wavefunction of the random system remains unchanged as gain is introduced. These results were obtained by the time-independent transfer matrix method and finite-difference-time-domain (FDTD) methods. They can be also analytically understood by generalizing the semi-classical Lamb theory of lasing in random systems. These findings provide a new path for observing the localization of light, such as looking for mobility edge and studying the localized states. %inside the random systems..Comment: Sent to PRL. 3 figure

    Propagation inhibition and wave localization in a 2D random liquid medium

    Full text link
    Acoustic propagation and scattering in water containing many parallel air-filled cylinders is studied. Two situations are considered and compared: (1) wave propagating through the array of cylinders, imitating a traditional experimental setup, and (2) wave transmitted from a source located inside the ensemble. We show that waves can be blocked from propagation by disorders in the first scenario, but the inhibition does not necessarily imply wave localization. Furthermore, the results reveal the phenomenon of wave localization in a range of frequencies.Comment: Typos in Fiures are correcte

    Local and average fields inside surface-disordered waveguides: Resonances in the one-dimensional Anderson localization regime

    Get PDF
    We investigate the one-dimensional propagation of waves in the Anderson localization regime, for a single-mode, surface disordered waveguide. We make use of both an analytical formulation and rigorous numerical simulation calculations. The occurrence of anomalously large transmission coefficients for given realizations and/or frequencies is studied, revealing huge field intensity concentration inside the disordered waveguide. The analytically predicted s-like dependence of the average intensity, being in good agreement with the numerical results for moderately long systems, fails to explain the intensity distribution observed deep in the localized regime. The average contribution to the field intensity from the resonances that are above a threshold transmission coefficient TcT_{c} is a broad distribution with a large maximum at/near mid-waveguide, depending universally (for given TcT_{c}) on the ratio of the length of the disorder segment to the localization length, L/ξL/\xi. The same universality is observed in the spatial distribution of the intensity inside typical (non-resonant with respect to the transmission coefficient) realizations, presenting a s-like shape similar to that of the total average intensity for TcT_{c} close to 1, which decays faster the lower is TcT_{c}. Evidence is given of the self-averaging nature of the random quantity log[I(x)]/x1/ξ\log[I(x)]/x\simeq -1/\xi. Higher-order moments of the intensity are also shown.Comment: 9 pages, 9 figure

    Field quantization for open optical cavities

    Get PDF
    We study the quantum properties of the electromagnetic field in optical cavities coupled to an arbitrary number of escape channels. We consider both inhomogeneous dielectric resonators with a scalar dielectric constant ϵ(r)\epsilon({\bf r}) and cavities defined by mirrors of arbitrary shape. Using the Feshbach projector technique we quantize the field in terms of a set of resonator and bath modes. We rigorously show that the field Hamiltonian reduces to the system--and--bath Hamiltonian of quantum optics. The field dynamics is investigated using the input--output theory of Gardiner and Collet. In the case of strong coupling to the external radiation field we find spectrally overlapping resonator modes. The mode dynamics is coupled due to the damping and noise inflicted by the external field. For wave chaotic resonators the mode dynamics is determined by a non--Hermitean random matrix. Upon including an amplifying medium, our dynamics of open-resonator modes may serve as a starting point for a quantum theory of random lasing.Comment: 16 pages, added references, corrected typo

    Localization of electromagnetic waves in a two dimensional random medium

    Full text link
    Motivated by previous investigations on the radiative effects of the electric dipoles embedded in structured cavities, localization of electromagnetic waves in two dimensions is studied {\it ab initio} for a system consisting of many randomly distributed two dimensional dipoles. A set of self-consistent equations, incorporating all orders of multiple scattering of the electromagnetic waves, is derived from first principles and then solved numerically for the total electromagnetic field. The results show that spatially localized electromagnetic waves are possible in such a simple but realistic disordered system. When localization occurs, a coherent behavior appears and is revealed as a unique property differentiating localization from either the residual absorption or the attenuation effects

    Nonlinear optical tuning of photonic crystal microcavities by near-field probe

    Get PDF
    We report on a nonlinear way to control and tune the dielectric environment of photonic crystalmicrocavities exploiting the local heating induced by near-field laser excitation at differentexcitation powers. The temperature gradient due to the optical absorption results in an index ofrefraction gradient which modifies the dielectric surroundings of the cavity and shifts the opticalmodes. Reversible tuning can be obtained either by changing the excitation power density or byexciting in different points of the photonic crystal microcavity
    corecore