628 research outputs found
Alternative resonance energy transfer mechanisms in polymer light harvesting
Dendrimeric polymers are a subject of considerable interest, particularly for their applications in energy harvesting devices, but also in organic light-emitting diodes, photosensitizers, quantum logic devices and low-threshold lasers. The distinctive light harvesting characteristics of these materials owe their origin to the speed, efficiency and highly directed nature of the multi-step processes that deliver captured light energy to the core. Recently it has been shown how iterative calculations, based on a matrix representation of the connectivity and propensity for energy transfer between different chromophores, effectively model the time-dependent flux of energy within dendrimer materials. This paper reports the formulation and results of an extended approach, accommodating additional mechanisms by means of which excitations of energy higher than the incoming photons can be generated and propagated towards a trap. It is also shown how the structure of the dendrimer and the operation of a spectroscopic gradient affect this energy flow. These mechanisms explain experimental observations in which energy coupling of four photons or more is observed in large aryl ether azodendrimers, at relatively low levels of irradiance
The Rise and Fall of Water Net (Hydrodictyon reticulatum) in New Zealand
During the late 1980s to early 1990s a range of aquatic habitats in the central North Island of New Zealand were invaded by the filamentous green alga, water net Hydrodictyon reticulatum (Linn. Lagerheim). The alga caused significant economic and recreational impacts at major sites of infestation, but it was also associated with enhanced invertebrate numbers and was the likely cause of an improvement in the trout fishery. The causes of prolific growth of water net and the range of control options pursued are reviewed. The possible causes of its sudden decline in 1995 are considered, including physical factors, increase in grazer pressure, disease, and loss of genetic vigour
Unitarity of Quantum Theory and Closed Time-Like Curves
Interacting quantum fields on spacetimes containing regions of closed
timelike curves (CTCs) are subject to a non-unitary evolution . Recently, a
prescription has been proposed, which restores unitarity of the evolution by
modifying the inner product on the final Hilbert space. We give a rigorous
description of this proposal and note an operational problem which arises when
one considers the composition of two or more non-unitary evolutions. We propose
an alternative method by which unitarity of the evolution may be regained, by
extending to a unitary evolution on a larger (possibly indefinite) inner
product space. The proposal removes the ambiguity noted by Jacobson in
assigning expectation values to observables localised in regions spacelike
separated from the CTC region. We comment on the physical significance of the
possible indefiniteness of the inner product introduced in our proposal.Comment: 13 pages, LaTeX. Final revised paper to be published in Phys Rev D.
Some changes are made to expand our discussion of Anderson's Proposal for
restoring unitarit
The Absolute Line Quadric and Camera Autocalibration
We introduce a geometrical object providing the same information as the absolute conic: the absolute line quadric (ALQ). After the introduction of the necessary exterior algebra and Grassmannian geometry tools, we analyze the Grassmannian of lines of P^3 from both the projective and Euclidean points of view. The exterior algebra setting allows then to introduce the ALQ as a quadric arising very naturally from the dual absolute quadric. We fully characterize the ALQ and provide clean relationships to solve the inverse problem, i.e., recovering the Euclidean structure of space from the ALQ. Finally we show how the ALQ turns out to be particularly suitable to address the Euclidean autocalibration of a set of cameras with square pixels and otherwise varying intrinsic parameters, providing new linear and non-linear algorithms for this problem. We also provide experimental results showing the good performance of the techniques
Electron momentum distribution in underdoped cuprates
We investigate the electron momentum distribution function (EMD) in a weakly
doped two-dimensional quantum antiferromagnet (AFM) as described by the t-J
model. Our analytical results for a single hole in an AFM based on the
self-consistent Born approximation (SCBA) indicate an anomalous momentum
dependence of EMD showing 'hole pockets' coexisting with a signature of an
emerging large Fermi surface. The position of the incipient Fermi surface and
the structure of the EMD is determined by the momentum of the ground state. Our
analysis shows that this result remains robust in the presence of next-nearest
neighbor hopping terms in the model. Exact diagonalization results for small
clusters are with the SCBA reproduced quantitatively.Comment: 5 pages, submitted to PR
Photoemission spectra of : a theoretical analysis
Recent angle resolved photoemission (ARPES) results for the insulating
cuprate have provided the first experimental data
which can be directly compared to the (theoretically) well--studied problem of
a single hole propagating in an antiferromagnet. The ARPES results reported a
small bandwidth, providing evidence for the existence of strong correlations in
the cuprates. However, in the same experiment some discrepancies with the
familiar 2D model were also observed. Here we discuss a comparison
between the ARPES results and the quasiparticle dispersion of both (i) the
Hamiltonian and (ii) the three--band Hubbard model in the
strong--coupling limit. Both model Hamiltonians show that the experimentally
observed one--hole band structure can be approximately reproduced using
reasonable values for , or the direct oxygen hopping amplitude .Comment: 11 pages, RevTex version 3.0, 3 postscript figures, LaTeX file and
figures have been uuencoded
Superconducting gap in the presence of bilayer splitting in underdoped Bi(Pb)2212
The clearly resolved bilayer splitting in ARPES spectra of the underdoped
Pb-Bi2212 compound rises the question of how the bonding and antibonding sheets
of the Fermi surface are gapped in the superconducting state. Here we compare
the superconducting gaps for both split components and show that within the
experimental uncertainties they are identical. By tuning the relative intensity
of the bonding and antibonding bands using different excitation conditions we
determine the precise {\bf k}-dependence of the leading edge gap. Significant
deviations from the simple cos()-cos() gap function for the
studied doping level are detected.Comment: 5 pages, 4 figures (revtex4
N=2 Topological Yang-Mills Theory on Compact K\"{a}hler Surfaces
We study a topological Yang-Mills theory with fermionic symmetry. Our
formalism is a field theoretical interpretation of the Donaldson polynomial
invariants on compact K\"{a}hler surfaces. We also study an analogous theory on
compact oriented Riemann surfaces and briefly discuss a possible application of
the Witten's non-Abelian localization formula to the problems in the case of
compact K\"{a}hler surfaces.Comment: ESENAT-93-01 & YUMS-93-10, 34pages: [Final Version] to appear in
Comm. Math. Phy
Influence of next-nearest-neighbor electron hopping on the static and dynamical properties of the 2D Hubbard model
Comparing experimental data for high temperature cuprate superconductors with
numerical results for electronic models, it is becoming apparent that a hopping
along the plaquette diagonals has to be included to obtain a quantitative
agreement. According to recent estimations the value of the diagonal hopping
appears to be material dependent. However, the values for discussed
in the literature were obtained comparing theoretical results in the weak
coupling limit with experimental photoemission data and band structure
calculations. The goal of this paper is to study how gets renormalized as
the interaction between electrons, , increases. For this purpose, the effect
of adding a bare diagonal hopping to the fully interacting two dimensional
Hubbard model Hamiltonian is investigated using numerical techniques. Positive
and negative values of are analyzed. Spin-spin correlations, ,
vs , and local magnetic moments are studied for values
of ranging from 0 to 6, and as a function of the electronic density. The
influence of the diagonal hopping in the spectral function
is also discussed, and the changes in the gap present in the density of states
at half-filling are studied. We introduce a new criterion to determine probable
locations of Fermi surfaces at zero temperature from data obtained
at finite temperature. It appears that hole pockets at
may be induced for negative while a positive produces similar
features at and . Comparisons with the standard 2D
Hubbard () model indicate that a negative hopping amplitude appears
to be dynamically generated. In general, we conclude that it is very dangerous
to extract a bare parameter of the Hamiltonian from PES data whereComment: 9 pages (RevTex 3.0), 12 figures (postscript), files packed with
uufile
Fully Gapped Single-Particle Excitations in the Lightly Doped Cuprates
The low-energy excitations of the lightly doped cuprates were studied by
angle-resolved photoemission spectroscopy. A finite gap was measured over the
entire Brillouin zone, including along the d_{x^2 - y^2} nodal line. This
effect was observed to be generic to the normal states of numerous cuprates,
including hole-doped La_{2-x}Sr_{x}CuO_{4} and Ca_{2-x}Na_{x}CuO_{2}Cl_{2} and
electron-doped Nd_{2-x}Ce_{x}CuO_{4}. In all compounds, the gap appears to
close with increasing carrier doping. We consider various scenarios to explain
our results, including the possible effects of chemical disorder, electronic
inhomogeneity, and a competing phase.Comment: To appear in Phys. Rev.
- …