34 research outputs found

    Uncertainty Principle for Control of Ensembles of Oscillators Driven by Common Noise

    Full text link
    We discuss control techniques for noisy self-sustained oscillators with a focus on reliability, stability of the response to noisy driving, and oscillation coherence understood in the sense of constancy of oscillation frequency. For any kind of linear feedback control--single and multiple delay feedback, linear frequency filter, etc.--the phase diffusion constant, quantifying coherence, and the Lyapunov exponent, quantifying reliability, can be efficiently controlled but their ratio remains constant. Thus, an "uncertainty principle" can be formulated: the loss of reliability occurs when coherence is enhanced and, vice versa, coherence is weakened when reliability is enhanced. Treatment of this principle for ensembles of oscillators synchronized by common noise or global coupling reveals a substantial difference between the cases of slightly non-identical oscillators and identical ones with intrinsic noise.Comment: 10 pages, 5 figure

    Infinite-Order Percolation and Giant Fluctuations in a Protein Interaction Network

    Full text link
    We investigate a model protein interaction network whose links represent interactions between individual proteins. This network evolves by the functional duplication of proteins, supplemented by random link addition to account for mutations. When link addition is dominant, an infinite-order percolation transition arises as a function of the addition rate. In the opposite limit of high duplication rate, the network exhibits giant structural fluctuations in different realizations. For biologically-relevant growth rates, the node degree distribution has an algebraic tail with a peculiar rate dependence for the associated exponent.Comment: 4 pages, 2 figures, 2 column revtex format, to be submitted to PRL 1; reference added and minor rewording of the first paragraph; Title change and major reorganization (but no result changes) in response to referee comments; to be published in PR

    Epidemic Incidence in Correlated Complex Networks

    Full text link
    We introduce a numerical method to solve epidemic models on the underlying topology of complex networks. The approach exploits the mean-field like rate equations describing the system and allows to work with very large system sizes, where Monte Carlo simulations are useless due to memory needs. We then study the SIR epidemiological model on assortative networks, providing numerical evidence of the absence of epidemic thresholds. Besides, the time profiles of the populations are analyzed. Finally, we stress that the present method would allow to solve arbitrary epidemic-like models provided that they can be described by mean-field rate equations.Comment: 5 pages, 4 figures. Final version published in PR

    Are randomly grown graphs really random?

    Full text link
    We analyze a minimal model of a growing network. At each time step, a new vertex is added; then, with probability delta, two vertices are chosen uniformly at random and joined by an undirected edge. This process is repeated for t time steps. In the limit of large t, the resulting graph displays surprisingly rich characteristics. In particular, a giant component emerges in an infinite-order phase transition at delta = 1/8. At the transition, the average component size jumps discontinuously but remains finite. In contrast, a static random graph with the same degree distribution exhibits a second-order phase transition at delta = 1/4, and the average component size diverges there. These dramatic differences between grown and static random graphs stem from a positive correlation between the degrees of connected vertices in the grown graph--older vertices tend to have higher degree, and to link with other high-degree vertices, merely by virtue of their age. We conclude that grown graphs, however randomly they are constructed, are fundamentally different from their static random graph counterparts.Comment: 8 pages, 5 figure

    Stability of shortest paths in complex networks with random edge weights

    Full text link
    We study shortest paths and spanning trees of complex networks with random edge weights. Edges which do not belong to the spanning tree are inactive in a transport process within the network. The introduction of quenched disorder modifies the spanning tree such that some edges are activated and the network diameter is increased. With analytic random-walk mappings and numerical analysis, we find that the spanning tree is unstable to the introduction of disorder and displays a phase-transition-like behavior at zero disorder strength ϵ=0\epsilon=0. In the infinite network-size limit (NN\to \infty), we obtain a continuous transition with the density of activated edges Φ\Phi growing like Φϵ1\Phi \sim \epsilon^1 and with the diameter-expansion coefficient Υ\Upsilon growing like Υϵ2\Upsilon\sim \epsilon^2 in the regular network, and first-order transitions with discontinuous jumps in Φ\Phi and Υ\Upsilon at ϵ=0\epsilon=0 for the small-world (SW) network and the Barab\'asi-Albert scale-free (SF) network. The asymptotic scaling behavior sets in when NNcN\gg N_c, where the crossover size scales as Ncϵ2N_c\sim \epsilon^{-2} for the regular network, Ncexp[αϵ2]N_c \sim \exp[\alpha \epsilon^{-2}] for the SW network, and Ncexp[αlnϵϵ2]N_c \sim \exp[\alpha |\ln \epsilon| \epsilon^{-2}] for the SF network. In a transient regime with NNcN\ll N_c, there is an infinite-order transition with ΦΥexp[α/(ϵ2lnN)]\Phi\sim \Upsilon \sim \exp[-\alpha / (\epsilon^2 \ln N)] for the SW network and exp[α/(ϵ2lnN/lnlnN)]\sim \exp[ -\alpha / (\epsilon^2 \ln N/\ln\ln N)] for the SF network. It shows that the transport pattern is practically most stable in the SF network.Comment: 9 pages, 7 figur

    Self-avoiding walks and connective constants in small-world networks

    Full text link
    Long-distance characteristics of small-world networks have been studied by means of self-avoiding walks (SAW's). We consider networks generated by rewiring links in one- and two-dimensional regular lattices. The number of SAW's unu_n was obtained from numerical simulations as a function of the number of steps nn on the considered networks. The so-called connective constant, μ=limnun/un1\mu = \lim_{n \to \infty} u_n/u_{n-1}, which characterizes the long-distance behavior of the walks, increases continuously with disorder strength (or rewiring probability, pp). For small pp, one has a linear relation μ=μ0+ap\mu = \mu_0 + a p, μ0\mu_0 and aa being constants dependent on the underlying lattice. Close to p=1p = 1 one finds the behavior expected for random graphs. An analytical approach is given to account for the results derived from numerical simulations. Both methods yield results agreeing with each other for small pp, and differ for pp close to 1, because of the different connectivity distributions resulting in both cases.Comment: 7 pages, 5 figure

    Generating correlated networks from uncorrelated ones

    Full text link
    In this paper we consider a transformation which converts uncorrelated networks to correlated ones(here by correlation we mean that coordination numbers of two neighbors are not independent). We show that this transformation, which converts edges to nodes and connects them according to a deterministic rule, nearly preserves the degree distribution of the network and significantly increases the clustering coefficient. This transformation also enables us to relate percolation properties of the two networks.Comment: 14 pages, 6 figures, Revtex

    Cascade-based attacks on complex networks

    Full text link
    We live in a modern world supported by large, complex networks. Examples range from financial markets to communication and transportation systems. In many realistic situations the flow of physical quantities in the network, as characterized by the loads on nodes, is important. We show that for such networks where loads can redistribute among the nodes, intentional attacks can lead to a cascade of overload failures, which can in turn cause the entire or a substantial part of the network to collapse. This is relevant for real-world networks that possess a highly heterogeneous distribution of loads, such as the Internet and power grids. We demonstrate that the heterogeneity of these networks makes them particularly vulnerable to attacks in that a large-scale cascade may be triggered by disabling a single key node. This brings obvious concerns on the security of such systems.Comment: 4 pages, 4 figures, Revte

    XY model in small-world networks

    Full text link
    The phase transition in the XY model on one-dimensional small-world networks is investigated by means of Monte-Carlo simulations. It is found that long-range order is present at finite temperatures, even for very small values of the rewiring probability, suggesting a finite-temperature transition for any nonzero rewiring probability. Nature of the phase transition is discussed in comparison with the globally-coupled XY model.Comment: 5 pages, accepted in PR

    Topology and correlations in structured scale-free networks

    Get PDF
    We study a recently introduced class of scale-free networks showing a high clustering coefficient and non-trivial connectivity correlations. We find that the connectivity probability distribution strongly depends on the fine details of the model. We solve exactly the case of low average connectivity, providing also exact expressions for the clustering and degree correlation functions. The model also exhibits a lack of small world properties in the whole parameters range. We discuss the physical properties of these networks in the light of the present detailed analysis.Comment: 10 pages, 9 figure
    corecore