269 research outputs found

    BCC vs. HCP - The Effect of Crystal Symmetry on the High Temperature Mobility of Solid 4^4He

    Full text link
    We report results of torsional oscillator (TO) experiments on solid 4^4He at temperatures above 1K. We have previously found that single crystals, once disordered, show some mobility (decoupled mass) even at these rather high temperatures. The decoupled mass fraction with single crystals is typically 20- 30%. In the present work we performed similar measurements on polycrystalline solid samples. The decoupled mass with polycrystals is much smaller, ∼\sim 1%, similar to what is observed by other groups. In particular, we compared the properties of samples grown with the TO's rotation axis at different orientations with respect to gravity. We found that the decoupled mass fraction of bcc samples is independent of the angle between the rotation axis and gravity. In contrast, hcp samples showed a significant difference in the fraction of decoupled mass as the angle between the rotation axis and gravity was varied between zero and 85 degrees. Dislocation dynamics in the solid offers one possible explanation of this anisotropy.Comment: 10 pages, 5 figures, to appear in Journal of Low Temperature Physics - special issue on Supersolidit

    Two-body correlations and the superfluid fraction for nonuniform systems

    Full text link
    We extend the one-body phase function upper bound on the superfluid fraction in a periodic solid (a spatially ordered supersolid) to include two-body phase correlations. The one-body current density is no longer proportional to the gradient of the one-body phase times the one-body density, but rather it depends also on two-body correlation functions. The equations that simultaneously determine the one-body and two-body phase functions require a knowledge of one-, two-, and three-body correlation functions. The approach can also be extended to disordered solids. Fluids, with two-body densities and two-body phase functions that are translationally invariant, cannot take advantage of this additional degree of freedom to lower their energy.Comment: 13 page

    A Comprehensive Approach to Investigating Fluorine-Bearing Gas Mixtures

    Get PDF
     An integrated method is proposed for examining the compositions of fluorine-bearing gaseous mixtures, which allows for determining the concentration of HF, F2, N2, O2, CO2, CF4, and C2F6 in these mixtures. The concentration of hydrogen fluoride is determined by its sorption on sodium fluoride followed by the determination of the fluoride ion by the potentiometric method. The lower threshold of determination of hydrogen fluoride is found to be 0.09 vol.%. The concentrations of N2, O2, CO2, CF4, and C2F6 are determined by the gas chromatographic method using a thermal conductivity detector. The proposed gas-chromatography method offers a quantitative measurement of the concentration of N2, O2, CO2, CF4, and C2F6 at the lower limits of detection of 0.008, 0.012, 0.011, 0.009, and 0.019 vol.%, respectively. Based on the developed method, the compositions of a standard fluorine-nitrogen (10 vol.%) and anodic gas samples, synthesized in a laboratory electrolyzer at the National Research Tomsk Polytechnic University and in an industrial electrochemical reactor at JSC Siberian Chemical Plant (Russia), are studied

    Microwave conductivity of a d-wave superconductor disordered by extended impurities: a real-space renormalization group approach

    Get PDF
    Using a real-space renormalization group (RSRG) technique, we compute the microwave conductivity of a d-wave superconductor disordered by extended impurities. To do this, we invoke a semiclassical approximation which naturally accesses the Andreev bound states localized near each impurity. Tunneling corrections (which are captured using the RSRG) lead to a delocalization of these quasiparticles and an associated contribution to the microwave conductivity.Comment: 8 pages, 4 figures. 2 figures added to previous versio

    Phase-Sensitive Tetracrystal Pairing-Symmetry Measurements and Broken Time-Reversal Symmetry States of High Tc Superconductors

    Full text link
    A detailed analysis of the symmetric tetracrystal geometry used in phase-sensitive pairing symmetry experiments on high Tc superconductors is carried out for both bulk and surface time-reversal symmetry-breaking states, such as the d+id' and d+is states. The results depend critically on the substrate geometry. In the general case, for the bulk d+id' (or d+is) state, the measured flux quantization should in general not be too different from that obtained in the pure d-wave case, provided |d'| << |d| (or |s| << |d|). However, in one particular high symmetry geometry, the d+id' state gives results that allow it to be distinguished from the pure d and the d + is states. Results are also given for the cases where surface d+is or d+id' states occur at a [110] surface of a bulk d-wave superconductor. Remarkably, in the highest symmetry geometry, a number of the broken time-reversal symmetry states discussed above give flux quantization conditions usually associated with states not having broken time- reversal symmetry.Comment: 6 page

    A glassy contribution to the heat capacity of hcp 4^4He solids

    Full text link
    We model the low-temperature specific heat of solid 4^4He in the hexagonal closed packed structure by invoking two-level tunneling states in addition to the usual phonon contribution of a Debye crystal for temperatures far below the Debye temperature, T<ΘD/50T < \Theta_D/50. By introducing a cutoff energy in the two-level tunneling density of states, we can describe the excess specific heat observed in solid hcp 4^4He, as well as the low-temperature linear term in the specific heat. Agreement is found with recent measurements of the temperature behavior of both specific heat and pressure. These results suggest the presence of a very small fraction, at the parts-per-million (ppm) level, of two-level tunneling systems in solid 4^4He, irrespective of the existence of supersolidity.Comment: 11 pages, 4 figure

    Quantization of adiabatic pumped charge in the presence of superconducting lead

    Get PDF
    We investigate the parametric electron pumping of a double barrier structure in the presence of a superconducting lead. The parametric pumping is facilitated by cyclic variation of the barrier heights x1x_1 and x2x_2 of the barriers. In the weak coupling regime, there exists a resonance line in the parameter space (x1,x2)(x_1,x_2) so that the energy of the quasi-bound state is in line with the incoming Fermi energy. Levinson et al found recently that the pumped charge for each pumping cycle is quantized with Q=2eQ=2e for normal structure when the pumping contour encircles the resonance line. In the presence of a superconducting lead, we find that the pumped charge is quantized with the value 2e2e

    Existence of the Abrikosov vortex state in two-dimensional type-II superconductors without pinning

    Full text link
    Theory alternative to the vortex lattice melting theories is advertised. The vortex lattice melting theories are science fiction cond-mat/9811051 because the Abrikosov state is not the vortex lattice with crystalline long-range order. Since the fluctuation correction to the Abrikosov solution is infinite in the thermodynamic limit (K.Maki and H.Takayama, 1972) any fluctuation theory of the mixed state should consider a superconductor with finite sizes. Such nonperturbative theory for the easiest case of two-dimensional superconductor in the lowest Landau level approximation is presented in this work. The thermodynamic averages of the spatial average order parameter and of the Abrikosov parameter βa\beta_{a} are calculated. It is shown that the position H_{c4} of the transition into the Abrikosov state (i.e. in the mixed state with long-range phase coherence) depends strongly on sizes of two-dimensional superconductor. Fluctuations eliminate the Abrikosov vortex state in a wide region of the mixed state of thin films with real sizes and without pinning disorders, i.e. H_{c4} << H_{c2}. The latter has experimental corroboration in Phys.Rev.Lett. 75, 2586 (1995).Comment: 4 pages, 0 figure

    Coherently Scattering Atoms from an Excited Bose-Einstein Condensate

    Full text link
    We consider scattering atoms from a fully Bose-Einstein condensed gas. If we take these atoms to be identical to those in the Bose-Einstein condensate, this scattering process is to a large extent analogous to Andreev reflection from the interface between a superconducting and a normal metal. We determine the scattering wave function both in the absence and the presence of a vortex. Our results show a qualitative difference between these two cases that can be understood as due to an Aharonov-Bohm effect. It leads to the possibility to experimentally detect and study vortices in this way.Comment: 5 pages of ReVTeX and 2 postscript figure

    Variational Calculations for 3^3He Impurities on 4^4He Droplets

    Full text link
    Variational Monte Carlo method is used to calculate ground state properties of 4^4He droplets, containing 70, 112, 168, 240, 330, and 728 particles. The resulting particle and kinetic energy densities are used as an input in the Feynman-Lekner theory for 3^3He impurities. The kinetic energy density of 4^4He atoms and the energy of the 3^3He surface states are compared with the results of previous phenomenological calculations.Comment: 12 pages, in revtex 3.0, with 5 .ps figure
    • …
    corecore