78 research outputs found
Quantum interference effects in p-Si1−xGex quantum wells
Quantum interference effects, such as weak localization and electronelectron interaction (EEI), have been investigated in magnetic fields up to 11 T for hole gases in a set of Si1−xGex quantum wells with 0.13 < x < 0.95. The temperature dependence of the hole phase relaxation time has been extracted from the magneto-resistance between 35 mK and 10 K. The spin-orbit effects that can be described within the Rashba model were observed in low magnetic fields. A quadratic negative magneto-resistance was observed in strong magnetic fields, due to the EEI effect. The hole-phonon scattering time was determined from hole overheating in a strong magnetic field
Ge-on-Si single-photon avalanche diode detectors: design, modeling, fabrication, and characterization at wavelengths 1310 and 1550 nm
The design, modeling, fabrication, and characterization of single-photon avalanche diode detectors with an epitaxial Ge absorption region grown directly on Si are presented. At 100 K, a single-photon detection efficiency of 4% at 1310 nm wavelength was measured with a dark count rate of ~ 6 megacounts/s, resulting in the lowest reported noise-equivalent power for a Ge-on-Si single-photon avalanche diode detector (1×10-14 WHz-1/2). The first report of 1550 nm wavelength detection efficiency measurements with such a device is presented. A jitter of 300 ps was measured, and preliminary tests on after-pulsing showed only a small increase (a factor of 2) in the normalized dark count rate when the gating frequency was increased from 1 kHz to 1 MHz. These initial results suggest that optimized devices integrated on Si substrates could potentially provide performance comparable to or better than that of many commercially available discrete technologies
Composite fermions traversing a potential barrier
Using a composite fermion picture, we study the lateral transport between two
two-dimensional electron gases, at filling factor 1/2, separated by a potential
barrier. In the mean field approximation, composite fermions far from the
barrier do not feel a magnetic field while in the barrier region the effective
magnetic field is different from zero. This produces a cutoff in the
conductance when represented as a function of the thickness and height of the
barrier. There is a range of barrier heights for which an incompressible
liquid, at , exists in the barrier region.Comment: 3 pages, latex, 4 figures available upon request from
[email protected]. To appear in Physical Review B (RC) June 15t
Quantum corrections to the conductivity of fermion - gauge field models: Application to half filled Landau level and high- superconductors
We calculate the Altshuler-Aronov type quantum correction to the conductivity
of charge carriers in a random potential (or random magnetic field)
coupled to a transverse gauge field. The gauge fields considered simulate the
effect of the Coulomb interaction for the fractional quantum Hall state at half
filling and for the model of high- superconducting compounds. We
find an unusually large quantum correction varying linearly or quadratically
with the logarithm of temperature, in different temperature regimes.Comment: 12 pages REVTEX, 1 figure. The figure is added and minor misprints
are correcte
Improved effective mobility extraction in MOSFETs
The standard method of extracting carrier effective mobility from electrical measurements on MOSFETs is reviewed and the assumptions implicit in this method are discussed. A novel technique is suggested that corrects for the difference in drain bias during IV and CV measurements. It is further shown that the lateral field and diffusion corrections, which are both commonly neglected, in fact cancel. The effectiveness of the proposed technique is demonstrated by application to data measured on a quasi-planar SOI finFET at 300 K and 4 K
Electron correlation effects in a wide channel from the quantum Hall edge states
The spatial behavior of Landau levels (LLs) for the quantum Hall
regime at the edge of a wide channel is studied in a self-consistent way by
using a generalized local density approximation proposed here. Both exchange
interaction and strong electron correlations, due to edge states, are taken
into account. They essentially modify the spatial behavior of the occupied
lowest spin-up LL in comparison with that of the lowest spin-down LL, which is
totally empty. The contrast in the spatial behavior can be attributed to a
different effective one-electron lateral confining potentials for the
spin-split LLs. Many-body effects on the spatially inhomogeneous spin-splitting
are calculated within the screened Hartree-Fock approximation. It is shown
that, far from the edges, the maximum activation energy is dominated by the gap
between the Fermi level and the bottom of the spin-down LL, because the gap
between the Fermi level and the spin-up LL is much larger. In other words, the
maximum activation energy in the bulk of the channel corresponds to a highly
asymmetric position of the Fermi level within the gap between spin-down and
spin-up LLs in the bulk. We have also studied the renormalization of the
edge-state group velocity due to electron correlations. The results of the
present theory are in line with those suggested and reported by experiments on
high quality samples.Comment: 9 pages, 4 figure
Quantum magneto-oscillations in a two-dimensional Fermi liquid
Quantum magneto-oscillations provide a powerfull tool for quantifying
Fermi-liquid parameters of metals. In particular, the quasiparticle effective
mass and spin susceptibility are extracted from the experiment using the
Lifshitz-Kosevich formula, derived under the assumption that the properties of
the system in a non-zero magnetic field are determined uniquely by the
zero-field Fermi-liquid state. This assumption is valid in 3D but, generally
speaking, erroneous in 2D where the Lifshitz-Kosevich formula may be applied
only if the oscillations are strongly damped by thermal smearing and disorder.
In this work, the effects of interactions and disorder on the amplitude of
magneto-oscillations in 2D are studied. It is found that the effective mass
diverges logarithmically with decreasing temperature signaling a deviation from
the Fermi-liquid behavior. It is also shown that the quasiparticle lifetime due
to inelastic interactions does not enter the oscillation amplitude, although
these interactions do renormalize the effective mass. This result provides a
generalization of the Fowler-Prange theorem formulated originally for the
electron-phonon interaction.Comment: 4 pages, 1 figur
Two-subband electron transport in nonideal quantum wells
Electron transport in nonideal quantum wells (QW) with large-scale variations
of energy levels is studied when two subbands are occupied. Although the mean
fluctuations of these two levels are screened by the in-plane redistribution of
electrons, the energies of both levels remain nonuniform over the plane. The
effect of random inhomogeneities on the classical transport is studied within
the framework of a local response approach for weak disorder. Both short-range
and small-angle scattering mechanisms are considered. Magnetotransport
characteristics and the modulation of the effective conductivity by transverse
voltage are evaluated for different kinds of confinement potentials (hard wall
QW, parabolic QW, and stepped QW).Comment: 10 pages, 6 figure
Spin effects in the magneto-drag between double quantum wells
We report on the selectivity to spin in a drag measurement. This selectivity
to spin causes deep minima in the magneto-drag at odd fillingfactors for
matched electron densities at magnetic fields and temperatures at which the
bare spin energy is only one tenth of the temperature. For mismatched densities
the selectivity causes a novel 1/B-periodic oscillation, such that negative
minima in the drag are observed whenever the majority spins at the Fermi
energies of the two-dimensional electron gasses (2DEGs) are anti-parallel, and
positive maxima whenever the majority spins at the Fermi energies are parallel.Comment: 4 pages, 3 figure
Theory of Shubnikov--De Haas Oscillations Around the Filling Factor of the Landau Level: Effect of Gauge Field Fluctuations
We present a theory of magnetooscillations around the Landau level
filling factor based on a model with a fluctuating Chern--Simons field. The
quasiclassical treatment of the problem is appropriate and leads to an
unconventional behavior of the
amplitude of oscillations. This result is in good qualitative agreement with
available experimental data.Comment: Revtex, 4 pages, 1 figure attached as PostScript fil
- …
