89 research outputs found

    Coupling loss, interstrand contact resistance, and magnetization of Nb3Sn rutherford cables with cores of MgO tape and s-glass ribbon

    Get PDF
    Multistrand cables may exhibit two classes of parasitic magnetization both of which can distort the bore-field of an accelerator magnet: (1) a static magnetization (“hysteretic”) resulting from intrastrand persistent currents, and (2) a dynamic magnetization produced by interstrand coupling currents generated during field ramping. The latter, which are moderated by the interstrand contact resistances (ICR), can be controlled by the presence of an insulating core inserted between the layers of the cable. Stainless steel ribbon (with its associated native oxide coating) is a frequently used core. Recently, however, MgO-paper tapes and woven s-glass ribbons have been suggested by LBNL (Lawrence Berkeley National Laboratory) as alternative core materials in the interests of improved flexibility and compatibility with the cabling process. This paper reports on the results of calorimetric AC loss (hence ICR) measurements on a set of four such cables and presents the results within the context of previously measured cored and uncored Nb3Sn cables. Also considered is a typical ramp-rate-induced coupling magnetization and its relationship to persistent-current magnetizations over the operating range of an accelerator magnet

    Conductor development for high field dipole magnets

    Full text link

    The Effect of Ta and Ti Additions on the Strain Sensitivity of Bulk Niobium-Tin

    Get PDF
    The effect of tantalum and titanium additions on the composition, the superconducting properties, and their sensitivity to strain of bulk Nb3Sn is investigated. Using heat capacity analysis and Scanning Electron Microscopy with Energy Dispersive X-ray Spectroscopy (SEM-EDX), it is found that the binary Nb3Sn bulk and Nb3Sn bulk with added titanium and tantalum consist of stoichiometric Nb3Sn and niobium(-oxide). Furthermore, it is found that the niobium-to-tin ratio decreases in the presence of tantalum and increases in the presence of titanium, which suggests that tantalum is replacing niobium and titanium is replacing tin in the A15 crystal structure. Using a 10% resistivity criterion, it is observed that the critical magnetic field of unstrained binary bulk is 26.7 T, while the presence of tantalum and titanium raises the critical magnetic field to 29.3 and 30.1 T, respectively. The curves of normalized critical magnetic field as function of strain of all three samples nearly overlap, a strong indication that the variation in strain sensitivity observed in wires is not caused by the titanium and tantalum additions. Understanding the effect of additions on the composition, superconducting properties, and strain sensitivity of Nb3Sn is important for optimizing Nb3Sn conductor technolog

    Measured Strain of Nb3Sn Coils During Excitation and Quench

    Get PDF
    The strain in a high field Nb{sub 3}Sn coil was measured during magnet assembly, cool-down, excitation and spot heater quenches. Strain was measured with a full bridge strain gauge mounted directly over the turns and impregnated with the coil. Two such coils were placed in a ''common coil'' fashion capable of reaching 11T at 4.2K. The measured steady state strain in the coil is compared with results obtained using the FEM code ANSYS. During quenches, the transient strain (due to temperature rise) was also measured and compared with the calculated mechanical time response to a quench
    corecore