29 research outputs found

    Genetic insights into resting heart rate and its role in cardiovascular disease.

    Get PDF
    Resting heart rate is associated with cardiovascular diseases and mortality in observational and Mendelian randomization studies. The aims of this study are to extend the number of resting heart rate associated genetic variants and to obtain further insights in resting heart rate biology and its clinical consequences. A genome-wide meta-analysis of 100 studies in up to 835,465 individuals reveals 493 independent genetic variants in 352 loci, including 68 genetic variants outside previously identified resting heart rate associated loci. We prioritize 670 genes and in silico annotations point to their enrichment in cardiomyocytes and provide insights in their ECG signature. Two-sample Mendelian randomization analyses indicate that higher genetically predicted resting heart rate increases risk of dilated cardiomyopathy, but decreases risk of developing atrial fibrillation, ischemic stroke, and cardio-embolic stroke. We do not find evidence for a linear or non-linear genetic association between resting heart rate and all-cause mortality in contrast to our previous Mendelian randomization study. Systematic alteration of key differences between the current and previous Mendelian randomization study indicates that the most likely cause of the discrepancy between these studies arises from false positive findings in previous one-sample MR analyses caused by weak-instrument bias at lower P-value thresholds. The results extend our understanding of resting heart rate biology and give additional insights in its role in cardiovascular disease development

    Measurements of the electrostatic and electromagnetic fields of Faraday shielding half-turn loop type ICRF antennae

    No full text
    Detailed measurements of both the electrostatic and electromagnetic fields are performed for various types of Faraday shields mounted on PLT ICRF antennae. The data show that the shields have little effect on the electromagnetic fields when the antenna is driven such that it is generating a constant total flux for the various cases. A new type of shield (Type II) is investigated that has no effect on the antenna inductance and performs equally as well as the conventional shields (Type I) in shielding out the electrostatic fields. Measurements indicate, for the shields investigated, that each layer of shield strips degrade the Q by approximately a factor of two

    Parabolic approximation method for fast magnetosonic wave propagation in tokamaks

    No full text
    Fast magnetosonic wave propagation in a cylindrical tokamak model is studied using a parabolic approximation method in which poloidal variations of the wave field are considered weak in comparison to the radial variations. Diffraction effects, which are ignored by ray tracing mthods, are included self-consistently using the parabolic method since continuous representations for the wave electromagnetic fields are computed directly. Numerical results are presented which illustrate the cylindrical convergence of the launched waves into a diffraction-limited focal spot on the cyclotron absorption layer near the magnetic axis for a wide range of plasma confinement parameters

    Chattering-free and fast-response sliding mode controller

    No full text
    10.1049/ip-cta:19990518IEE Proceedings: Control Theory and Applications1462171-177ICTA

    Simulation of the "Blowby" effect in an accelerating compact toroid

    No full text

    Measurements of ICRF (ion cyclotron range of frequencies) loading with a ridged waveguide coupler on PLT

    No full text
    An ICRF ridged waveguide coupler has been installed on PLT for measurements of plasma loading. The coupler was partially filled with TiO/sub 2/ dielectric in order to sufficiently lower the cutoff frequency and utilized a tapered ridge for improved matching. Vacuum field measurements indicated a single propagating mode in the coupler and emphasized the importance of considering the fringing fields at the mouth of the waveguide. Low power experiments were carried out at 72.6 and 95.0 MHz without any external impedance matching network. Plasma loading increased rapidly as the face of the coupler approached the plasma, and, at fixed position, increased with line-averaged plasma density. At the lower frequency, the reflection coefficient exhibited a minimum (<8%) at a particular coupler position. At both frequencies, measurements indicated efficient power coupling to the plasma. Magnetic probe signals showed evidence of dense eigenmodes suggesting excitation of the fast wave. 24 refs., 13 figs
    corecore