30 research outputs found

    Efficient Computations of Encodings for Quantum Error Correction

    Full text link
    We show how, given any set of generators of the stabilizer of a quantum code, an efficient gate array that computes the codewords can be constructed. For an n-qubit code whose stabilizer has d generators, the resulting gate array consists of O(n d) operations, and converts k-qubit data (where k = n - d) into n-qubit codewords.Comment: 16 pages, REVTeX, 3 figures within the tex

    Effect of an inhomogeneous external magnetic field on a quantum dot quantum computer

    Full text link
    We calculate the effect of an inhomogeneous magnetic field, which is invariably present in an experimental environment, on the exchange energy of a double quantum dot artificial molecule, projected to be used as a 2-qubit quantum gate in the proposed quantum dot quantum computer. We use two different theoretical methods to calculate the Hilbert space structure in the presence of the inhomogeneous field: the Heitler-London method which is carried out analytically and the molecular orbital method which is done computationally. Within these approximations we show that the exchange energy J changes slowly when the coupled dots are subject to a magnetic field with a wide range of inhomogeneity, suggesting swap operations can be performed in such an environment as long as quantum error correction is applied to account for the Zeeman term. We also point out the quantum interference nature of this slow variation in exchange.Comment: 12 pages, 4 figures embedded in tex

    Separability in 2xN composite quantum systems

    Get PDF
    We analyze the separability properties of density operators supported on \C^2\otimes \C^N whose partial transposes are positive operators. We show that if the rank of ρ\rho equals N then it is separable, and that bound entangled states have rank larger than N. We also give a separability criterion for a generic density operator such that the sum of its rank and the one of its partial transpose does not exceed 3N. If it exceeds this number we show that one can subtract product vectors until decreasing it to 3N, while keeping the positivity of ρ\rho and its partial transpose. This automatically gives us a sufficient criterion for separability for general density operators. We also prove that all density operators that remain invariant after partial transposition with respect to the first system are separable.Comment: Extended version of quant-ph/9903012 with new results. 11 page

    Information and entropy in quantum Brownian motion: Thermodynamic entropy versus von Neumann entropy

    Full text link
    We compare the thermodynamic entropy of a quantum Brownian oscillator derived from the partition function of the subsystem with the von Neumann entropy of its reduced density matrix. At low temperatures we find deviations between these two entropies which are due to the fact that the Brownian particle and its environment are entangled. We give an explanation for these findings and point out that these deviations become important in cases where statements about the information capacity of the subsystem are associated with thermodynamic properties, as it is the case for the Landauer principle.Comment: 8 pages, 7 figure

    Achievable rates for the Gaussian quantum channel

    Get PDF
    We study the properties of quantum stabilizer codes that embed a finite-dimensional protected code space in an infinite-dimensional Hilbert space. The stabilizer group of such a code is associated with a symplectically integral lattice in the phase space of 2N canonical variables. From the existence of symplectically integral lattices with suitable properties, we infer a lower bound on the quantum capacity of the Gaussian quantum channel that matches the one-shot coherent information optimized over Gaussian input states.Comment: 12 pages, 4 eps figures, REVTe

    Maximizing the entanglement of two mixed qubits

    Get PDF
    Two-qubit states occupy a large and relatively unexplored Hilbert space. Such states can be succinctly characterized by their degree of entanglement and purity. In this letter we investigate entangled mixed states and present a class of states that have the maximum amount of entanglement for a given linear entropy.Comment: 4 pages, 3 figure

    Quantum computing with mixed states

    Full text link
    We discuss a model for quantum computing with initially mixed states. Although such a computer is known to be less powerful than a quantum computer operating with pure (entangled) states, it may efficiently solve some problems for which no efficient classical algorithms are known. We suggest a new implementation of quantum computation with initially mixed states in which an algorithm realization is achieved by means of optimal basis independent transformations of qubits.Comment: 2 figures, 52 reference

    Implementation of a Deutsch-like quantum algorithm utilizing entanglement at the two-qubit level, on an NMR quantum information processor

    Get PDF
    We describe the experimental implementation of a recently proposed quantum algorithm involving quantum entanglement at the level of two qubits using NMR. The algorithm solves a generalisation of the Deutsch problem and distinguishes between even and odd functions using fewer function calls than is possible classically. The manipulation of entangled states of the two qubits is essential here, unlike the Deutsch-Jozsa algorithm and the Grover's search algorithm for two bits.Comment: 4 pages, two eps figure

    Generation of atom-photon entangled states in atomic Bose-Einstein condensate via electromagnetically induced transparency

    Full text link
    In this paper, we present a method to generate continuous-variable-type entangled states between photons and atoms in atomic Bose-Einstein condensate (BEC). The proposed method involves an atomic BEC with three internal states, a weak quantized probe laser and a strong classical coupling laser, which form a three-level Lambda-shaped BEC system. We consider a situation where the BEC is in electromagnetically induced transparency (EIT) with the coupling laser being much stronger than the probe laser. In this case, the upper and intermediate levels are unpopulated, so that their adiabatic elimination enables an effective two-mode model involving only the atomic field at the lowest internal level and the quantized probe laser field. Atom-photon quantum entanglement is created through laser-atom and inter-atomic interactions, and two-photon detuning. We show how to generate atom-photon entangled coherent states and entangled states between photon (atom) coherent states and atom-(photon-) macroscopic quantum superposition (MQS) states, and between photon-MQS and atom-MQS states.Comment: 9 pages, 1 figur

    Grover search with pairs of trapped ions

    Full text link
    The desired interference required for quantum computing may be modified by the wave function oscillations for the implementation of quantum algorithms[Phys.Rev.Lett.84(2000)1615]. To diminish such detrimental effect, we propose a scheme with trapped ion-pairs being qubits and apply the scheme to the Grover search. It can be found that our scheme can not only carry out a full Grover search, but also meet the requirement for the scalable hot-ion quantum computing. Moreover, the ion-pair qubits in our scheme are more robust against the decoherence and the dissipation caused by the environment than single-particle qubits proposed before.Comment: RevTe
    corecore