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Maximizing the entanglement of two mixed qubits
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Two-qubit states occupy a large and relatively unexplored Hilbert space. Such states can be succinctly
characterized by their degree of entanglement and purity. In this article we investigate entangled mixed states
and present a class of states that have the maximum amount of entanglement for a given linear entropy.
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With the recent rapid developments in quantum inform
tion there has been a renewed interest in multiparticle qu
tum mechanics and entanglement. The properties of st
between the pure, maximally-entangled, and comple
mixed ~separable! limits are not completely known and hav
not been fully characterized. The physically allowed deg
of entanglement and mixture is a timely issue, given t
entangled qubits are a critical resource in many quant
information applications~such as quantum computatio
@1,2#, quantum communication@3#, quantum cryptography
@4,5# and teleportation@6,7#!, and that entangled mixed state
could be advantageous for certain quantum information s
ations@8#.

The simplest nontrivial multiparticle system that can
investigated both theoretically and experimentally consist
two qubits. A two-qubit system displays many of the pa
doxical features of quantum mechanics such as superpos
and entanglement. Extreme cases are well known and c
enough: maximally entangled two particle states have b
produced in a range of physical systems@9–12#, while two-
qubits have been encoded in product~nonentangled! states
@13# via liquid nuclear magnetic resonance@14#. Recently,
however White et al. have experimentally generate
polarization-entangled photons in both nonmaximally e
tangled states@15#, and general states with variable degree
mixture and entanglement@16#.

In this Rapid Communication, we explore theoretica
the domain between pure, highly entangled states, and hi
mixed, weakly entangled states. We will partially charact
ize @17# such two-qubit states by theirpurity and degree of
entanglement@18#. Specifically, we address the questio
What is the form of maximally entangled mixed states, t
is, states with the maximum amount of entanglement fo
given degree of purity? Ishizakaet al. @19# have proposed
two-qubit mixed states in which the degree of entanglem
cannot be increased further by any unitary operations~the
Werner state@20# is one such example!. A numerical explo-
ration of the entanglement—purity plane is used to estab
an upper bound for the maximum amount of entanglem
possible for a given purity, and vice versa. We derive
analytical form for this class ofmaximally entangled mixed
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states~MEMS! and show it to be optimal for the entangle
ment and purity measures considered.

Currently a variety of measures are known for quantifyi
the degree of entanglement in a bipartite system. These
clude the entanglement of distillation@18#, the relative en-
tropy of entanglement@2#, but the canonical measure of en
tanglement is called theentanglement of formation@18# and
for an arbitrary two-qubit system is given by@21#

EF~ r̂ !5hS 11A12t

2 D , ~1!

whereh(x)52x log2(x)2(12x)log2(12x) is Shannon’s en-
tropy function andt, the ~‘‘concurrence’’ squared! ‘‘tangle’’
@21# is given by

t5C 25@max$l12l22l32l4,0%#2. ~2!

Here thel ’s are the square roots of the eigenvalues, in

creasing order, of the matrix,r̂ r̃̂5 r̂sy
A

^ sy
Br̂* sy

A
^ sy

B ,

wherer̂* denotes the complex conjugation ofr̂ in the com-
putational basis$u00&,u01&,u10&,u11&%, and is an antiunitary
operation. Since the entanglement of formationEF is a
strictly monotonic function oft, the maximum oft corre-
sponds to the maximum ofEF . Thus in this paper we use th
tangle directly as our measure of entanglement. Fo
maximally-entangled pure statet51, while for an unen-
tangled statet50.

There exist for the degree of mixture of a state a num
of measures. These include the von Neumann entropy
state, given by S52Tr@ r̂ ln r̂# @22#, and the purity Tr@ r̂2#. In
this paper we use the linear entropy given by@23#

SL5 4
3 $12Tr@ r̂2#%, ~3!

which ranges from 0~for a pure state! to 1 ~for a maximally-
mixed state!. The linear entropy is generally a simpler qua
tity to calculate and hence its choice here.

Let us now examine our two-qubit states and the reg
they occupy in the tangle–linear-entropy plane. We begin
randomly generating two million density matrics represe
ing physical states, and determining their linear entropy a
tangle. In Fig. 1~a! we display a subset of these results f
30 000 points. We see that quite a large region of this plan
©2001 The American Physical Society02-1
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filled with physically acceptable states~obviously a maxi-
mally mixed, maximally entangled state is not possible!. Zy-
czkowskiet al. @24# have performed similar numerical stud
ies, but their work focused on how many entangled states
in the set of all quantum states. In Fig. 1~a! we have also
explicitly plotted the tangle versus linear entropy for t
Werner state, a mixture of the maximally entangled state
the maximally mixed state@20#:

r̂5
12g

4
I 2^ I 21guF1&^F1u, ~4!

where I 2 is the identity matrix anduF1&51/A2@ u0&u0&
1u1&u1&]. We have labeled our orthogonal qubit states
u0& and u1&. This Werner state is entangled~inseparable! for
g.1/3 @25# and maximally-entangled wheng51. The re-
sults from Fig. 1~a! clearly indicate a class of states that ha
a larger degree of entanglement for a given linear entr
than the Werner states. We also generated a second s
data ~by random perturbations about the maximally e
tangled mixed states! so as to examine the boundary of po
sible states, which in the previous data set was a spar

FIG. 1. Plot of the tanglet and linear entropySL of numerically
generated two-qubit random matrices. Two sets of data are plo
~a! 30 000 randomly generated matrices, which show the exten
physical states in the entanglement-purity plane;~b! 30 000 ran-
domly generated matrices weighted to explore the boundary reg
Also shown are analytical curves for~i! the Werner state, a mixture
of the maximally entangled state and the maximally mixed st
and~ii ! the maximally entangled mixed states, states with the m
mal amount of entanglement for a given degree of linear entropy~or
vice versa!. See text for further details.
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populated region. As can be seen in Fig. 1~b!, a definite
boundary to the physically possible states exists.

Let us now analytically determine the form of the
MEMS. As our starting point, let us consider the Wern
state given by Eq.~4!. How can one increase its degree
entanglement without changing its purity, or, alternative
how can one increase its linear entropy given a certain
gree of entanglement? It was shown by Lewenstein and S
pera@26# that any two-qubit entangled state can be written
a mixture of a separable state and a single pure entan
state. The Werner state~4! is recognizably of this form. All
its entanglement arises from theguF1&^F1u term, and
hence, to leave the degree of entanglement fixed while
creasing the linear entropy this term needs to remain
touched. Local unitary operations will not affect the degr
of entanglement or linear entropy. In deriving our ansatz,
will note the following points:

~i! The I 2^ I 2 term of the Werner states represents t
maximally mixed state. It can be written as an equal inc
herent mixture of the four Bell statesuC6&51/A2@ u0&u1&
6u1&u0&] and uF6&51/A2@ u0&u0&6u1&u1&]. If in our pro-
posed ansatz we increase the amount of any of theuC6& or
uF2& Bell states, then the net entanglement in the total s
tem generally decreases.

~ii ! In a general two-qubit density matrix there are tw
types of off-diagonal terms, those that represent the entan
ment and those that represent single-particle superposi
These single-particle superposition terms can be set to
by local linear operations, and so, by definition, cann
change the net entanglement or linear entropy.

~iii ! The diagonal elements of the two-qubit density m
trix do not affect the system’s maximum entanglement~given
a specified amount ofuF1&^F1u!. The diagonal elements
however, have a significant impact on the linear entro
These principles lead us to postulate an ansatz of the fo

r̂5S x1
g

2
0 0

g

2

0 a 0 0

0 0 b 0

g

2
0 0 y1

g

2

D . ~5!

This comprises a mixture of the maximally-entangled B
stateuF1& and a mixed diagonal state~whose populations
are specified by the real and non-negative parame
a,b,x,y). Without loss of generality we chooseg to be a
positive real number, which ensures that the ansatz den
matrix is positive semidefinite. From normalization,

x1y1a1b1g51, ~6!

the linear entropy is simply given by

SL5
4

3
$12a22b22x22y22g~x1y!2g2%, ~7!

with the concurrence given by

d:
of

n.

;
i-
2-2
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C5max@g22Aab,0#. ~8!

To determine the form of the two-qubit maximally
entangled mixed states, we begin by specifying that the c
currence C must be greater than zero. ThusC5max@g
22Aab,0#5g22Aab>0 and therefore is maximized whe
C5g. This requires eithera50 and/orb50 ~without loss of
generality we setb50). Using the normalization constrain
given by Eq.~6!, the linear entropy is given by

SL5 4
3 $2a1~g12x!~12a2g!22x222a2%. ~9!

Calculating the turning point of Eq.~9!, we find that
]SL /]x50 when eitherx50 ~a minimum! or 2x512a
2g ~a maximum! and]SL /]a50 when eithera50 ~a mini-
mum! or 4a5222x2g ~a maximum!. First examining the
]SL /]x stationary solution and the maximum given by 2x
512a2g, we observe that this condition requiresx5y. If
a512g then the stationary point corresponds to a turn
point. We now need to examine several parameter regime
determine the optimal solution. The first region has conc
rence values in the region 2/3<C[g<1. In this region the
optimal situation occurs whenx50 and a512g. This
means the maximally entangled mixed state has the form

r̂MEMS5S g/2 0 0 g/2

0 12g 0 0

0 0 0 0

g/2 0 0 g/2

D . ~10!

The second regime occurs for 0<C[g<2/3. In this case the
optimal solution occurs whena51/3 andx1g/251/3. The
optimal maximally entangled mixed state in this region h
the form

r̂MEMS5S 1/3 0 0 g/2

0 1/3 0 0

0 0 0 0

g/2 0 0 1/3

D . ~11!

In this case the diagonal elements do not vary withg. Com-
bining both these solutions, we can obtain~up to local uni-
tary transformations! the following single explicit form for
the maximal entangled mixed state:

r̂MEMS5S g~g! 0 0 g/2

0 122g~g! 0 0

0 0 0 0

g/2 0 0 g~g!

D , ~12!

where

g~g!5H g/2, C[g>2/3

1/3, C[g,2/3.
~13!
03030
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The degree of entanglement for this maximally entang
mixed state is simplyt5g2, while the linear entropy has th
form

SL5 2
3 @4g~g!„223g~g!…2g2#. ~14!

In Fig. ~1! we have plotted the tangle versus the line
entropy for the Werner state, and the numerically determi
maximally entangled mixed state. Our analytic express
for the state~12! perfectly overlays the numerically gene
ated optimal curve. It is clear that these states have a sig
cantly greater degree of entanglement for a given linear
tropy than the corresponding Werner states. The maxima
entangled mixed state and Werner state curves join e
other at two points in the tangle–linear-entropy plane. T
first and most obvious point occurs at (t,SL)5(1,0) ~here
both states are maximally entangled!. The second point oc-
curs at (t,SL)5(0,8/9). Here the two states are given by,

r̂Werner5S 1/3 0 0 1/6

0 1/6 0 0

0 0 1/6 0

1/6 0 0 1/3

D ,

r̂MEMS5S 1/3 0 0 0

0 1/3 0 0

0 0 0 0

0 0 0 1/3

D . ~15!

Neither state is entangled. We observe thatr̂MEMS at this
point has no nonzero off-diagonal elements, but the Wer
state does. The maximally entangled mixed state is entan
as soon as the off-diagonal elements are nonzero (g.0,
while the Werner state requiresg.1/3 to be entangled!.
Thoughr̂Wernerandr̂MEMS have different forms they have th
same degree of entanglement~zero! and linear entropy. Be-
cause of the way the maximally entangled mixed state
been constructed, it never attains a linear entropySL51. The
Werner state attains this point because of its maxima
mixed component.

To confirm that our analytic solution is optimal and th
no density matrix has a greater degree of entanglement f
given linear entropy than the state~12!, we generated one
million further random density matrices. We found that t
maximally entangled mixed state is indeed optimal. It is
teresting to note, however, that the state is only optimal
mixture measures based on Tr@ r̂2#; if instead the degree o
mixture is measured for instance by the entropy@22#, the
state is not optimal.

Last, how does our class of maximally entangled mix
states compare with those predicted by Ishizaka and
roshima@19#? Ishizaka’s two-qubit mixed states, the Wern
state being a specific example, were chosen so that the
gree of entanglement of such states cannot be increased
ther by unitary operations. In contrast, we have derive
class of states that have the maximum amount of entan
ment for a given linear entropy~and vice versa!. Therefore
2-3
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our states are members of the Ishizakaet al. class by defini-
tion, although they were not explicitly considered@19#. The
Ishizaka et al. result indicates that a maximally entangle
mixed state cannot have the degree of entanglement
creased by unitary operations. This state can however h
its entanglement increased by a simple and experimen
realizable nonunitary concentration protocol recently p
posed by Thew and Munro@27#. Such a protocol is based o
generalization of the Procrustean method originally int

FIG. 2. Plot of the tanglet versus linear entropySL for the
maximally entangled mixed state~dotted line!. By employing a con-
centration protocol@26#, an initial state~solid circle! can be ma-
nipulated to produce a range of alternative states~solid gray lines!
with improved entanglement and linear entropy characteristics.
iat
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duced for pure states@28# and recently demonstrated expe
mentally@29#. In Fig. 2 we display the results of the conce
tration protocol for two initial conditions. The solid curve
represent a range of states that are obtainable, from the m
mally entangled mixed state, as the concentration protoco
applied to improve the output state characteristics. We
serve that for allg, the output characteristics can be signi
cantly improved~solid gray lines!. In fact, for g>2/3 the
maximally entangled mixed state can be concentrated up
dashed curve to a maximally entangled pure state.

To summarize, we have discovered a class of partia
entangled mixed two-qubit states that have the maxim
amount of entanglement for a given linear entropy. An a
lytical form for these states was derived and they w
shown to have significantly more entanglement for a giv
degree of purity than the Werner states. The properties
these states are still largely unknown and require signific
exploration. Open questions such as ‘‘can such states be
alized experimentally,’’ ‘‘to what extent do they violate Be
inequalities,’’ and ‘‘do they have information processing a
vantages over other states’’ are the subject of current inv
tigation.
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