444 research outputs found

    Considering stratospheric aerosol injections beyond an environmental frame: The intelligible ‘emergency’ techno-fix and preemptive security

    Get PDF
    Stratospheric Aerosol Injection (SAI), is often referred to as a ‘Plan B’ if mitigation strategies to reduce emissions fail and the need to rapidly reduce global temperatures becomes urgent. In theory, SAI would help buy more time to bring carbon and other emissions down while also cooling or keeping the planet below the threshold for dangerous warming, though it is not a solution to the problem of climate change in itself. What little attention it has received in International Relations (IR) is usually focused on the need for governance of the technology and assumes that development and use of the technology will be driven primarily by vulnerability to climate impacts. Through an analysis of common security assumptions and preemptive security framings the article shows that while current assessments of SAI focus on the technology’s environmental impact, broader political and security dynamics, particularly the desire to render climate change more intelligible as a security problem with a solution may have substantial influence on how the technology is used and by whom

    Thermodynamics and evaporation of the noncommutative black hole

    Full text link
    We investigate the thermodynamics of the noncommutative black hole whose static picture is similar to that of the nonsingular black hole known as the de Sitter-Schwarzschild black hole. It turns out that the final remnant of extremal black hole is a thermodynamically stable object. We describe the evaporation process of this black hole by using the noncommutativity-corrected Vaidya metric. It is found that there exists a close relationship between thermodynamic approach and evaporation process.Comment: 16 pages, 6 figures, added references, to appear in JHE

    Gamma rays from dark matter annihilation in the Draco and observability at ARGO

    Full text link
    The CACTUS experiment recently observed a gamma ray excess above 50 GeV from the direction of the Draco dwarf spheroidal galaxy. Considering that Draco is dark matter dominated the gamma rays may be generated through dark matter annihilation in the Draco halo. In the framework of the minimal supersymmetric extension of the standard model we explore the parameter space to account for the gamma ray signals at CACTUS. We find that the neutralino mass is constrained to be approximately in the range between 100 GeV ~ 400 GeV and a sharp central cuspy of the dark halo profile in Draco is necessary to explain the CACTUS results. We then discuss further constraints on the supersymmetric parameter space by observations at the ground based ARGO detector. It is found that the parameter space can be strongly constrained by ARGO if no excess from Draco is observed above 100 GeV.Comment: 15 pages, 4 figure

    Absolute values of the London penetration depth in YBa2Cu3O6+y measured by zero field ESR spectroscopy on Gd doped single crystals

    Full text link
    Zero-field electron spin resonance (ESR) of dilute Gd ions substituted for Y in the cuprate superconductor YBa2_2Cu3_3O6+y_{\rm 6+y} is used as a novel technique for measuring the absolute value of the low temperature magnetic penetration depth λ(T0)\lambda(T\to 0). The Gd ESR spectrum of samples with 1\approx 1% substitution was obtained with a broadband microwave technique that measures power absorption bolometrically from 0.5 GHz to 21 GHz. This ESR spectrum is determined by the crystal field that lifts the level degeneracy of the spin 7/2 Gd3+^{3+} ion and details of this spectrum provide information concerning oxygen ordering in the samples. The magnetic penetration depth is obtained by relating the number of Gd ions exposed to the microwave magnetic field to the frequency-integrated intensity of the observed ESR transitions. This technique has allowed us to determine precise values of λ\lambda for screening currents flowing in the three crystallographic orientations (a^\hat a, b^\hat b and c^\hat c) in samples of Gdx_{\rm x}Y1x_{\rm 1-x}Ba2_2Cu3_3O6+y_{6+{\rm y}} of three different oxygen contents y=0.993{\rm y}=0.993 (Tc=89T_c = 89 K), y=0.77{\rm y}=0.77 (Tc=75T_c=75 K) and y=0.52{\rm y}=0.52 (Tc=56T_c=56 K). The in-plane values are found to depart substantially from the widely reported relation Tc1/λ2T_c\propto 1/\lambda^2.Comment: 14 pages, 12 figures; version to appear in PR

    Some general properties of the renormalized stress-energy tensor for static quantum states on (n+1)-dimensional spherically symmetric black holes

    Get PDF
    We study the renormalized stress-energy tensor (RSET) for static quantum states on (n+1)-dimensional, static, spherically symmetric black holes. By solving the conservation equations, we are able to write the stress-energy tensor in terms of a single unknown function of the radial co-ordinate, plus two arbitrary constants. Conditions for the stress-energy tensor to be regular at event horizons (including the extremal and ``ultra-extremal'' cases) are then derived using generalized Kruskal-like co-ordinates. These results should be useful for future calculations of the RSET for static quantum states on spherically symmetric black hole geometries in any number of space-time dimensions.Comment: 9 pages, no figures, RevTeX4, references added, accepted for publication in General Relativity and Gravitatio

    On non-local variational problems with lack of compactness related to non-linear optics

    Full text link
    We give a simple proof of existence of solutions of the dispersion manage- ment and diffraction management equations for zero average dispersion, respectively diffraction. These solutions are found as maximizers of non-linear and non-local vari- ational problems which are invariant under a large non-compact group. Our proof of existence of maximizer is rather direct and avoids the use of Lions' concentration compactness argument or Ekeland's variational principle.Comment: 30 page

    Substructures in lens galaxies: PG1115+080 and B1555+375, two fold configurations

    Full text link
    We study the anomalous flux ratio which is observed in some four-image lens systems, where the source lies close to a fold caustic. In this case two of the images are close to the critical curve and their flux ratio should be equal to unity, instead in several cases the observed value differs significantly. The most plausible solution is to invoke the presence of substructures, as for instance predicted by the Cold Dark Matter scenario, located near the two images. In particular, we analyze the two fold lens systems PG1115+080 and B1555+375, for which there are not yet satisfactory models which explain the observed anomalous flux ratios. We add to a smooth lens model, which reproduces well the positions of the images but not the anomalous fluxes, one or two substructures described as singular isothermal spheres. For PG1115+080 we consider a smooth model with the influence of the group of galaxies described by a SIS and a substructure with mass 105M\sim 10^{5} M_{\odot} as well as a smooth model with an external shear and one substructure with mass 108M\sim 10^{8} M_{\odot} . For B1555+375 either a strong external shear or two substructures with mass 107M\sim 10^{7} M_{\odot} reproduce the data quite well.Comment: 26 pages, updated bibliography, Accepted for publication in Astrophysics & Space Scienc

    Pulsar Timing and its Application for Navigation and Gravitational Wave Detection

    Full text link
    Pulsars are natural cosmic clocks. On long timescales they rival the precision of terrestrial atomic clocks. Using a technique called pulsar timing, the exact measurement of pulse arrival times allows a number of applications, ranging from testing theories of gravity to detecting gravitational waves. Also an external reference system suitable for autonomous space navigation can be defined by pulsars, using them as natural navigation beacons, not unlike the use of GPS satellites for navigation on Earth. By comparing pulse arrival times measured on-board a spacecraft with predicted pulse arrivals at a reference location (e.g. the solar system barycenter), the spacecraft position can be determined autonomously and with high accuracy everywhere in the solar system and beyond. We describe the unique properties of pulsars that suggest that such a navigation system will certainly have its application in future astronautics. We also describe the on-going experiments to use the clock-like nature of pulsars to "construct" a galactic-sized gravitational wave detector for low-frequency (f_GW ~1E-9 - 1E-7 Hz) gravitational waves. We present the current status and provide an outlook for the future.Comment: 30 pages, 9 figures. To appear in Vol 63: High Performance Clocks, Springer Space Science Review

    CDMS, Supersymmetry and Extra Dimensions

    Get PDF
    The CDMS experiment aims to directly detect massive, cold dark matter particles originating from the Milky Way halo. Charge and lattice excitations are detected after a particle scatters in a Ge or Si crystal kept at ~30 mK, allowing to separate nuclear recoils from the dominating electromagnetic background. The operation of 12 detectors in the Soudan mine for 75 live days in 2004 delivered no evidence for a signal, yielding stringent limits on dark matter candidates from supersymmetry and universal extra dimensions. Thirty Ge and Si detectors are presently installed in the Soudan cryostat, and operating at base temperature. The run scheduled to start in 2006 is expected to yield a one order of magnitude increase in dark matter sensitivity.Comment: To be published in the proceedings of the 7th UCLA symposium on sources and detection of dark matter and dark energy in the universe, Marina del Rey, Feb 22-24, 200

    Indirect search for dark matter: prospects for GLAST

    Full text link
    Possible indirect detection of neutralino, through its gamma-ray annihilation product, by the forthcoming GLAST satellite from our galactic halo, M31, M87 and the dwarf galaxies Draco and Sagittarius is studied. Gamma-ray fluxes are evaluated for the two representative energy thresholds, 0.1 GeV and 1.0 GeV, at which the spatial resolution of GLAST varies considerably. Apart from dwarfs which are described either by a modified Plummer profile or by a tidally-truncated King profiles, fluxes are compared for halos with central cusps and cores. It is demonstrated that substructures, irrespective of their profiles, enhance the gamma-ray emission only marginally. The expected gamma-ray intensity above 1 GeV at high galactic latitudes is consistent with the residual emission derived from EGRET data if the density profile has a central core and the neutralino mass is less than 50 GeV, whereas for a central cusp only a substantial enhancement would explain the observations. From M31, the flux can be detected above 0.1 GeV and 1.0 GeV by GLAST only if the neutralino mass is below 300 GeV and if the density profile has a central cusp, case in which a significant boost in the gamma-ray emission is produced by the central black hole. For Sagittarius, the flux above 0.1 GeV is detectable by GLAST provided the neutralino mass is below 50 GeV. From M87 and Draco the fluxes are always below the sensitivity limit of GLAST.Comment: 14 Pages, 7 Figures, 3 Tables, version to appear on Physical Review
    corecore