32 research outputs found

    MT FdR: a ferredoxin reductase from M. tuberculosis that couples to MT CYP51

    Get PDF
    AbstractWe report the molecular cloning, expression and partial characterization of MT FdR, an FAD-associated flavoprotein, from Mycobacterium tuberculosis similar to the oxygenase-coupled NADH-dependent ferredoxin reductases (ONFR). We establish, through kinetic and spectral analysis, that MT FdR preferentially uses NADH as cofactor. Furthermore, MT FdR forms a complex with mycobacterial ferredoxin (MT Fdx) and MT CYP51, a cytochrome P450 (CYP) from M. tuberculosis that is similar to lanosterol 14α-demethylase isozymes. This reconstituted system transfers electrons from the cofactor to the heme iron of MT CYP51 and effects the demethylation of lanosterol

    Phonon-drag effects on thermoelectric power

    Full text link
    We carry out a calculation of the phonon-drag contribution SgS_g to the thermoelectric power of bulk semiconductors and quantum well structures for the first time using the balance equation transport theory extended to the weakly nonuniform systems. Introducing wavevector and phonon-mode dependent relaxation times due to phonon-phonon interactions, the formula obtained can be used not only at low temperatures where the phonon mean free path is determined by boundary scattering, but also at high temperatures. In the linear transport limit, SgS_g is equivalent to the result obtained from the Boltzmann equation with a relaxation time approximation. The theory is applied to experiments and agreement is found between the theoretical predictions and experimental results. The role of hot-electron effects in SgS_g is discussed. The importance of the contribution of SgS_g to thermoelectric power in the hot-electron transport condition is emphasized.Comment: 8 pages, REVTEX 3.0, 7 figures avilable upon reques

    Noise Kernel and Stress Energy Bi-Tensor of Quantum Fields in Hot Flat Space and Gaussian Approximation in the Optical Schwarzschild Metric

    Get PDF
    Continuing our investigation of the regularization of the noise kernel in curved spacetimes [N. G. Phillips and B. L. Hu, Phys. Rev. D {\bf 63}, 104001 (2001)] we adopt the modified point separation scheme for the class of optical spacetimes using the Gaussian approximation for the Green functions a la Bekenstein-Parker-Page. In the first example we derive the regularized noise kernel for a thermal field in flat space. It is useful for black hole nucleation considerations. In the second example of an optical Schwarzschild spacetime we obtain a finite expression for the noise kernel at the horizon and recover the hot flat space result at infinity. Knowledge of the noise kernel is essential for studying issues related to black hole horizon fluctuations and Hawking radiation backreaction. We show that the Gaussian approximated Green function which works surprisingly well for the stress tensor at the Schwarzschild horizon produces significant error in the noise kernel there. We identify the failure as occurring at the fourth covariant derivative order.Comment: 21 pages, RevTeX

    Space Telescope and Optical Reverberation Mapping Project. VII. Understanding the Ultraviolet Anomaly in NGC 5548 with X-Ray Spectroscopy

    Get PDF
    During the Space Telescope and Optical Reverberation Mapping Project observations of NGC 5548, the continuum and emission-line variability became decorrelated during the second half of the six-month-long observing campaign. Here we present Swift and Chandra X-ray spectra of NGC 5548 obtained as part of the campaign. The Swift spectra show that excess flux (relative to a power-law continuum) in the soft X-ray band appears before the start of the anomalous emission-line behavior, peaks during the period of the anomaly, and then declines. This is a model-independent result suggesting that the soft excess is related to the anomaly. We divide the Swift data into on- and off-anomaly spectra to characterize the soft excess via spectral fitting. The cause of the spectral differences is likely due to a change in the intrinsic spectrum rather than to variable obscuration or partial covering. The Chandra spectra have lower signal-to-noise ratios, but are consistent with the Swift data. Our preferred model of the soft excess is emission from an optically thick, warm Comptonizing corona, the effective optical depth of which increases during the anomaly. This model simultaneously explains all three observations: the UV emission-line flux decrease, the soft-excess increase, and the emission-line anomaly

    Surface interfacial analysis of simulant high level nuclear waste glass dissolved in synthetic cement solutions

    Get PDF
    The corrosion mechanisms and kinetics of a Mg-rich alkali aluminoborosilicate glass simulating UK high-level waste (CaZn28) were investigated upon dissolution in synthetic cement solutions. Dissolution varied as a function the different pH and alkali/alkaline earth content of each cement solution. High resolution microscopy and spectroscopy techniques ascertained the nature of the interface between the glass and the cement solutions. TEM-EDS revealed alkali- and alkaline earth-rich silica gels, into which K, Ca and Mg were incorporated. TEM-SAED, combined with synchrotron micro-focus XRD, identified the ubiquitous precipitation of the Mg-aluminate layered double hydroxide phase, meixnerite (Mg6Al2(OH)18·4H2O), in addition to goethite (FeOOH) and crystalline silica. The C-S-H phase, tobermorite (Ca5Si6O16(OH)2·4H2O), was identified in the most Ca-rich solution only. These data give insight to the role of alkali/alkaline earth-rich solutions in the dissolution or radioactive waste glasses, of importance to the final disposition in a geological disposal facility

    In Vitro Evaluation of Macroporous Hydrogels to Facilitate Stem Cell Infiltration, Growth, and Mineralization

    No full text
    Hydrogels have gained acceptance as biomaterials in a wide range of applications, including pharmaceutical formulations, drug delivery, and tissue sealants. However, exploiting the potential of hydrogels as scaffolds for cell transplantation, tissue engineering, and regenerative medicine still remains a challenge due to, in part, scaffold design limitations. Here, we describe a highly interconnected, macroporous poly(ethylene glycol) diacrylate hydrogel scaffold, with pores ranging from 100 to 600 μm. The scaffold exhibits rapid cell uptake and cell seeding without the need of any external force or device with high incorporation efficiency. When human mesenchymal stem cells are seeded within the porous scaffolds, the scaffolds were found to promote long-term stem cell viability, and on exposure to osteogenic medium, elicit an mineralization response as evaluated by an increased alkaline phosphatase activity (per cell) and calcium and phosphate content within the constructs. The atomic composition of the mineralized matrix was further determined by energy dispersive spectroscopy and found to be similar to calcium-deficient hydroxyapatite, the amorphous biological precursor of bone. The macroporous design of the hydrogel appears advantageous over similar porous hydrogel scaffolds with respect to ease of synthesis, ease of stem cell seeding, and its ability to support long-term stem cell survival and possible differentiation
    corecore