168 research outputs found

    Autonomous agile teams: Challenges and future directions for research

    Get PDF
    According to the principles articulated in the agile manifesto, motivated and empowered software developers relying on technical excellence and simple designs, create business value by delivering working software to users at regular short intervals. These principles have spawned many practices. At the core of these practices is the idea of autonomous, self-managing, or self-organizing teams whose members work at a pace that sustains their creativity and productivity. This article summarizes the main challenges faced when implementing autonomous teams and the topics and research questions that future research should address

    Quantum correction to the Kubo formula in closed mesoscopic systems

    Full text link
    We study the energy dissipation rate in a mesoscopic system described by the parametrically-driven random-matrix Hamiltonian H[\phi(t)] for the case of linear bias \phi=vt. Evolution of the field \phi(t) causes interlevel transitions leading to energy pumping, and also smears the discrete spectrum of the Hamiltonian. For sufficiently fast perturbation this smearing exceeds the mean level spacing and the dissipation rate is given by the Kubo formula. We calculate the quantum correction to the Kubo result that reveals the original discreteness of the energy spectrum. The first correction to the system viscosity scales proportional to v^{-2/3} in the orthogonal case and vanishes in the unitary case.Comment: 4 pages, 3 eps figures, REVTeX

    The relationship between students’ engagement and the development of Transactive Memory Systems in MUVE: An experience report

    Get PDF
    Student engagement is a very important topic in higher education hence, it drew a lot of research interest over the years. The use of educational Multi-User Virtual Environments (MUVEs) that provide synchronous interaction, dynamic, interactive and social learning experiences have the potential to increase student engagement and contribute to their learning experience. Due to increased social and cognitive presence, the use of such environments can result in greater student engagement when compared to traditional asynchronous learning environments. In this work, we hypothesized that students’ engagement in collaborative learning activities will increase if Transactive Memory System (TMS) constructs are present. Thus, we employed the theory of TMS that emphasizes the importance of Specialization, Coordination and Credibility between members in a team. The results show that there is a significant correlation between the development of TMS and students’ engagement. In addition, further quantitative and observation analysis reveals some interesting facts about students’ engagement with respect to their collaboration in group activities

    Localization Bounds for Multiparticle Systems

    Full text link
    We consider the spectral and dynamical properties of quantum systems of nn particles on the lattice Zd\Z^d, of arbitrary dimension, with a Hamiltonian which in addition to the kinetic term includes a random potential with iid values at the lattice sites and a finite-range interaction. Two basic parameters of the model are the strength of the disorder and the strength of the interparticle interaction. It is established here that for all nn there are regimes of high disorder, and/or weak enough interactions, for which the system exhibits spectral and dynamical localization. The localization is expressed through bounds on the transition amplitudes, which are uniform in time and decay exponentially in the Hausdorff distance in the configuration space. The results are derived through the analysis of fractional moments of the nn-particle Green function, and related bounds on the eigenfunction correlators

    Unscreened Hartree-Fock calculations for metallic Fe, Co, Ni, and Cu from ab-initio Hamiltonians

    Full text link
    Unscreened Hartree-Fock approximation (HFA) calculations for metallic Fe, Co, Ni, and Cu are presented, by using a quantum-chemical approach. We believe that these are the first HFA results to have been done for crystalline 3d transition metals. Our approach uses a linearized muffin-tin orbital calculation to determine Bloch functions for the Hartree one-particle Hamiltonian, and from these obtains maximally localized Wannier functions, using a method proposed by Marzari and Vanderbilt. Within this Wannier basis all relevant one-particle and two-particle Coulomb matrix elements are calculated. The resulting second-quantized multi-band Hamiltonian with ab-initio parameters is studied within the simplest many-body approximation, namely the unscreened, self-consistent HFA, which takes into account exact exchange and is free of self-interactions. Although the d-bands sit considerably lower within HFA than within the local (spin) density approximation L(S)DA, the exchange splitting and magnetic moments for ferromagnetic Fe, Co, and Ni are only slightly larger in HFA than what is obtained either experimentally or within LSDA. The HFA total energies are lower than the corresponding LSDA calculations. We believe that this same approach can be easily extended to include more sophisticated ab-initio many-body treatments of the electronic structure of solids.Comment: 11 papes, 7 figures, 5 table

    Freedom in Nature

    Get PDF
    The paper starts with the proposal that the cause of the apparent insolubility of the free-will problem are several popular but strongly metaphysical notions and hypotheses. To reduce the metaphysics, some ideas are borrowed from physics. A concept of event causality is discussed. The importance of Hume's Principle of Causality is stressed and his Principle of Causation is weakened. The key concept of the paper, the so-called relative freedom, is also suggested by physics. It is a kind of freedom that can be observed everywhere in nature. Turning to biology, incomplete knowledge is defined for all organisms. They cope with the problem by Popper's trial and error processes. One source of their success is the relative freedom of choice from the basic option ranges: mutations, motions and neural connections. Finally, the conjecture is adopted that communicability can be used as a criterion of consciousness and free will is defined as a conscious version of relative freedom. The resulting notion is logically self-consistent and it describes an observable phenomenon that agrees with our experience.Comment: Changes: Improved formulation, three references added; 22 pages, no figure. Comments are welcom

    Making things happen : a model of proactive motivation

    Get PDF
    Being proactive is about making things happen, anticipating and preventing problems, and seizing opportunities. It involves self-initiated efforts to bring about change in the work environment and/or oneself to achieve a different future. The authors develop existing perspectives on this topic by identifying proactivity as a goal-driven process involving both the setting of a proactive goal (proactive goal generation) and striving to achieve that proactive goal (proactive goal striving). The authors identify a range of proactive goals that individuals can pursue in organizations. These vary on two dimensions: the future they aim to bring about (achieving a better personal fit within one’s work environment, improving the organization’s internal functioning, or enhancing the organization’s strategic fit with its environment) and whether the self or situation is being changed. The authors then identify “can do,” “reason to,” and “energized to” motivational states that prompt proactive goal generation and sustain goal striving. Can do motivation arises from perceptions of self-efficacy, control, and (low) cost. Reason to motivation relates to why someone is proactive, including reasons flowing from intrinsic, integrated, and identified motivation. Energized to motivation refers to activated positive affective states that prompt proactive goal processes. The authors suggest more distal antecedents, including individual differences (e.g., personality, values, knowledge and ability) as well as contextual variations in leadership, work design, and interpersonal climate, that influence the proactive motivational states and thereby boost or inhibit proactive goal processes. Finally, the authors summarize priorities for future researc

    Low Q^2 Jet Production at HERA and Virtual Photon Structure

    Get PDF
    The transition between photoproduction and deep-inelastic scattering is investigated in jet production at the HERA ep collider, using data collected by the H1 experiment. Measurements of the differential inclusive jet cross-sections dsigep/dEt* and dsigmep/deta*, where Et* and eta* are the transverse energy and the pseudorapidity of the jets in the virtual photon-proton centre of mass frame, are presented for 0 < Q2 < 49 GeV2 and 0.3 < y < 0.6. The interpretation of the results in terms of the structure of the virtual photon is discussed. The data are best described by QCD calculations which include a partonic structure of the virtual photon that evolves with Q2.Comment: 20 pages, 5 Figure

    Hadron Production in Diffractive Deep-Inelastic Scattering

    Get PDF
    Characteristics of hadron production in diffractive deep-inelastic positron-proton scattering are studied using data collected in 1994 by the H1 experiment at HERA. The following distributions are measured in the centre-of-mass frame of the photon dissociation system: the hadronic energy flow, the Feynman-x (x_F) variable for charged particles, the squared transverse momentum of charged particles (p_T^{*2}), and the mean p_T^{*2} as a function of x_F. These distributions are compared with results in the gamma^* p centre-of-mass frame from inclusive deep-inelastic scattering in the fixed-target experiment EMC, and also with the predictions of several Monte Carlo calculations. The data are consistent with a picture in which the partonic structure of the diffractive exchange is dominated at low Q^2 by hard gluons.Comment: 16 pages, 6 figures, submitted to Phys. Lett.

    Measurement of D* Meson Cross Sections at HERA and Determination of the Gluon Density in the Proton using NLO QCD

    Get PDF
    With the H1 detector at the ep collider HERA, D* meson production cross sections have been measured in deep inelastic scattering with four-momentum transfers Q^2>2 GeV2 and in photoproduction at energies around W(gamma p)~ 88 GeV and 194 GeV. Next-to-Leading Order QCD calculations are found to describe the differential cross sections within theoretical and experimental uncertainties. Using these calculations, the NLO gluon momentum distribution in the proton, x_g g(x_g), has been extracted in the momentum fraction range 7.5x10^{-4}< x_g <4x10^{-2} at average scales mu^2 =25 to 50 GeV2. The gluon momentum fraction x_g has been obtained from the measured kinematics of the scattered electron and the D* meson in the final state. The results compare well with the gluon distribution obtained from the analysis of scaling violations of the proton structure function F_2.Comment: 27 pages, 9 figures, 2 tables, submitted to Nucl. Phys.
    corecore