894 research outputs found

    Infrared Spectroscopic Study of Vibrational Modes across the Orthorhombic Tetragonal Phase Transition in Methylammonium Lead Halide Single Crystals

    Get PDF
    Single crystals of the methylammonium MA lead halides MAPbI3, MAPbBr3, and MAPbCl3 have been investigated using infrared spectroscopy with the aim of analyzing structural and dynamical aspects of processes that enable the ordering of the MA molecule in the orthorhombic crystal structure of these hybrid perovskites. Our temperature dependent studies were focused on the analysis of the CH NH rocking, C N stretching, and CH NH bending modes of the MA molecule in the 800 1750 cm 1 frequency range. They deliver a direct comparison of the behaviors of the three halides on crossing the orthorhombic tetragonal phase transition in MA lead halide single crystals. Drastic changes of all vibrational modes close to the phase transition were clearly observed. Additional spectral features that were not discussed previously are pointed out. The transformation of the two dimensional orthorhombic hydrogen bond layers into a more three dimensional arrangement in the tetragonal phase seems to be an important feature providing deeper insights into the mechanisms that lead to a free rotating MA molecule in the inorganic host structure. The change of the molecule site symmetry in the tetragonal crystal structure seems to be an important feature of the orthorhombic tetragonal phase transition. For low temperatures, it can be stated that the iodide is stronger influenced by hydrogen bonding than the bromide and the chlorid

    Multidimensional continued fractions, dynamical renormalization and KAM theory

    Full text link
    The disadvantage of `traditional' multidimensional continued fraction algorithms is that it is not known whether they provide simultaneous rational approximations for generic vectors. Following ideas of Dani, Lagarias and Kleinbock-Margulis we describe a simple algorithm based on the dynamics of flows on the homogeneous space SL(2,Z)\SL(2,R) (the space of lattices of covolume one) that indeed yields best possible approximations to any irrational vector. The algorithm is ideally suited for a number of dynamical applications that involve small divisor problems. We explicitely construct renormalization schemes for (a) the linearization of vector fields on tori of arbitrary dimension and (b) the construction of invariant tori for Hamiltonian systems.Comment: 51 page

    Missing energy in black hole production and decay at the Large Hadron Collider

    Full text link
    Black holes could be produced at the Large Hadron Collider in TeV-scale gravity scenarios. We discuss missing energy mechanisms in black hole production and decay in large extra-dimensional models. In particular, we examine how graviton emission into the bulk could give the black hole enough recoil to leave the brane. Such a perturbation would cause an abrupt termination in Hawking emission and result in large missing-energy signatures.Comment: addressed reviewer comments and updated reference

    Engaging without over-powering: A case study of a FLOSS project

    Get PDF
    This is the post-print version of the published chapter. The original publication is available at the link below. Copyright @ 2010 IFIP International Federation for Information Processing.The role of Open Source Software (OSS) in the e-learning business has become more and more fundamental in the last 10 years, as long as corporate and government organizations have developed their educational and training programs based on OSS out-of-the-box tools. This paper qualitatively documents the decision of the largest UK e-learning provider, the Open University, to adopt the Moodle e-learning system, and how it has been successfully deployed in its site after a multi-million investment. A further quantitative study also provides evidence of how a commercial stakeholder has been engaged with, and produced outputs for, the Moodle community. Lessons learned from this experience by the stakeholders include the crucial factors of contributing to the OSS community, and adapting to an evolving technology. It also becomes evident how commercial partners helped this OSS system to achieve the transition from an “average” OSS system to a successful multi-site, collaborative and community-based OSS project

    Giant Gravitons - with Strings Attached (III)

    Full text link
    We develop techniques to compute the one-loop anomalous dimensions of operators in the N=4{\cal N}=4 super Yang-Mills theory that are dual to open strings ending on boundstates of sphere giant gravitons. Our results, which are applicable to excitations involving an arbitrary number of open strings, generalize the single string results of hep-th/0701067. The open strings we consider carry angular momentum on an S3^3 embedded in the S5^5 of the AdS5×_5\timesS5^5 background. The problem of computing the one loop anomalous dimensions is replaced with the problem of diagonalizing an interacting Cuntz oscillator Hamiltonian. Our Cuntz oscillator dynamics illustrates how the Chan-Paton factors for open strings propagating on multiple branes can arise dynamically.Comment: 66 pages; v2: improved presentatio

    Electrified BPS Giants: BPS configurations on Giant Gravitons with Static Electric Field

    Full text link
    We consider D3-brane action in the maximally supersymmetric type IIB plane-wave background. Upon fixing the light-cone gauge, we obtain the light-cone Hamiltonian which is manifestly supersymmetric. The 1/2 BPS solutions of this theory (solutions which preserve 16 supercharges) are either of the form of spherical three branes, the giant gravitons, or zero size point like branes. We then construct specific classes of 1/4 BPS solutions of this theory in which static electric field on the brane is turned on. These solutions are deformations about either of the two 1/2 BPS solutions. In particular, we study in some detail 1/4 BPS configurations with electric dipole on the three sphere giant, i.e. BIons on the giant gravitons, which we hence call BIGGons. We also study BPS configurations corresponding to turning on a background uniform constant electric field. As a result of this background electric field the three sphere giant is deformed to squashed sphere, while the zero size point like branes turn into circular or straight fundamental strings in the plane-wave background, with their tension equal to the background electric field.Comment: 32 pages, 1 eps figure; v2: Presentation of derivation of light-cone Hamiltonian improved, Refs adde

    Structural and optical studies of FeSb2 under high pressure

    Get PDF
    Nanostructured orthorhombic FeSb2 and an amorphous phase were formed by mechanical alloying starting from a mixture of high purity elemental Fe and Sb powders. The effects of high pressures on structural and optical properties were studied using X-ray diffraction (XRD) and Raman spectroscopy (RS). XRD patterns showed the presence of the orthorhombic FeSb2 phase up to the maximum pressure applied (28.2 GPa). The XRD patterns showed also an increase in the amount of the amorphous phase with increasing pressure up to 23.3 GPa. At 14.3 GPa, together with the former phases, a new phase was observed and indexed to a tetragonal FeSb2 phase, but its volume fraction is small at least up to 23.3 GPa. For the orthorhombic FeSb2 phase, the pressure dependence of the volume fitted to a Birch-Murnaghan equation of state gave a bulk modulus = 74.2 +- 3.0 GPa and its pressure derivative = 7.5 +- 0.6. RS measurements were performed from atmospheric pressure up to 45.2 GPa. For the orthorhombic FeSb2 phase, the Raman active mode was observed up to the maximum pressure applied, while the mode disappeared at 16.6 GPa. For pressures higher than 21 GPa, the Raman active mode of a tetragonal FeSb2 phase was observed, confirming ab initio calculations reported in the literature.Comment: 31 pages, 11 figures and 2 tables. Already submitted for publicatio

    Comparison of the Effects of Two Topical Fluoride Regimens on Demineralized Enamel in vivo

    Full text link
    The purpose of this investigation was to study the intra-oral remineralization of acid-softened enamel by a NaF dentifrice compared with that from a combination of topical F agents. Bovine enamel slabs were demineralized with 0.1 mol/L lactic acid at pH 4.0 for 14 hr and then mounted in a removable mandibular appliance. Control slabs were worn for 96 hr by seven adult males who brushed daily with a F-free dentifrice. Test slabs were brushed with a NaF dentifrice 4 x / day or with the same dentifrice 4 x /day and a 0.02% APF mouthrinse and a 0.4% SnF2 gel which were applied oncelday for three days. The natural dentition was also brushed with the NaF dentifrice during both test periods. Microhardness testing was performed on sound enamel, and after acid-softening, intra-oral exposure (IOE), and acid resistance testing (ART) in 0.01 mol/L lactic acid at pH 4.0 for 24 hr. Control and test slabs were etched with 0.5 mol/L HClO4 for from 15 to 60 sec. The F content was measured with a F electrode and PO4 by spectrophotometry. Contact microradiography and image analyses were performed on control and test slabs so that changes in mineral content resulting from treatment could be assessed. Both test groups were significantly harder after both IOE and ART than were controls, but no differences appeared between the effects of the two test groups. The F content of control slabs was significantly less than that of both test groups, and the combination-treated slabs showed greater F than did the dentifrice-treated slabs. Microradiographs revealed a higher mineral content in the basal 2/3 of combination-treated lesions, while diffuse mineral deposition occurred, especially subjacent to the surface in the dentifrice-treated lesions. Control lesions showed little added mineral.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/66793/2/10.1177_00220345880670061301.pd

    Experimental String Field Theory

    Get PDF
    We develop efficient algorithms for level-truncation computations in open bosonic string field theory. We determine the classical action in the universal subspace to level (18,54) and apply this knowledge to numerical evaluations of the tachyon condensate string field. We obtain two main sets of results. First, we directly compute the solutions up to level L=18 by extremizing the level-truncated action. Second, we obtain predictions for the solutions for L > 18 from an extrapolation to higher levels of the functional form of the tachyon effective action. We find that the energy of the stable vacuum overshoots -1 (in units of the brane tension) at L=14, reaches a minimum E_min = -1.00063 at L ~ 28 and approaches with spectacular accuracy the predicted answer of -1 as L -> infinity. Our data are entirely consistent with the recent perturbative analysis of Taylor and strongly support the idea that level-truncation is a convergent approximation scheme. We also check systematically that our numerical solution, which obeys the Siegel gauge condition, actually satisfies the full gauge-invariant equations of motion. Finally we investigate the presence of analytic patterns in the coefficients of the tachyon string field, which we are able to reliably estimate in the L -> infinity limit.Comment: 37 pages, 6 figure
    • 

    corecore