7 research outputs found

    Oxalate formation under the hyperarid conditions of the Atacama desert as a mineral marker to provide clues to the source of organic carbon on Mars

    Get PDF
    In this study, we report the detection and characterization of the organic minerals weddellite (CaC2O4 · 2H2O) and whewellite (CaC2O4 · H2O) in the hyperarid, Mars-like conditions of the Salar Grande, Atacama desert, Chile. Weddellite and whewellite are commonly of biological origin on Earth and have great potential for preserving records of carbon geochemistry and possible biological activity on Mars if they are present there. Weddellite and whewellite have been found as secondary minerals occurring inside the lower detrital unit that fills the Salar Grande basin. The extremely low solubility of most oxalate minerals inhibits detection of oxalate by ion chromatography (IC). Crystalline oxalates, including weddellite and whewellite, were detected by X-ray diffraction (XRD). The association of weddellite with surface biota and its presence among subsurface detrital materials suggest the potential of a biological origin for Salar Grande weddellite and whewellite. In this regard, biological activity is uniquely capable of concentrating oxalates at levels detectable by XRD. The complementary detection of oxalate-bearing phases through IC in the upper halite-rich unit suggests the presence of a soluble oxalate phase in the basin that is not detected by XRD. The formation, transport, and concentration of oxalate in the Salar Grande may provide a geochemical analogue for oxalate-bearing minerals recently suggested to exist on Mars

    Fitting the curve in Excel®:Systematic curve fitting of laboratory and remotely sensed planetary spectra

    Get PDF
    Spectroscopy in planetary science often provides the only information regarding the compositional and mineralogical make up of planetary surfaces. The methods employed when curve fitting and modelling spectra can be confusing and difficult to visualize and comprehend. Researchers who are new to working with spectra may find inadequate help or documentation in the scientific literature or in the software packages available for curve fitting. This problem also extends to the parameterization of spectra and the dissemination of derived metrics. Often, when derived metrics are reported, such as band centres, the discussion of exactly how the metrics were derived, or if there was any systematic curve fitting performed, is not included. Herein we provide both recommendations and methods for curve fitting and explanations of the terms and methods used. Techniques to curve fit spectral data of various types are demonstrated using simple-to-understand mathematics and equations written to be used in Microsoft Excel® software, free of macros, in a cut-and-paste fashion that allows one to curve fit spectra in a reasonably user-friendly manner. The procedures use empirical curve fitting, include visualizations, and ameliorates many of the unknowns one may encounter when using black-box commercial software. The provided framework is a comprehensive record of the curve fitting parameters used, the derived metrics, and is intended to be an example of a format for dissemination when curve fitting data

    Heating Saponite, Serpentine, and a Carbonaceous Chondrite Spectral Analogue Under Vacuum to Track the Spectral Variability of the 2.7 µm Band.

    No full text
    The scientific significance of carbonaceous chondrites has been established as windows into our early Solar System [1]. The presence of phyllosilicates in CM2 carbonaceous chondrites indicates a history of aqueous alteration [2, 3]. Carbonaceous chondrites (CCs) exhibit spectral similarities to several C-complex asteroids, which may act as parent bodies [4, 5]. Several CCs (and therefore their parent body asteroids) have undergone thermal alteration following aqueous alteration [6, 7]. Here we present the reflectance spectra of heated saponite, serpentine, and a spectral analogue created at the Centre for Terrestrial and Planetary Exploration (C-TAPE) laboratory at the University of Winnipeg, Canada. The intent is to understand how thermal metamorphism affects their spectroscopic properties

    Reflectance spectroscopy (200-2500nm) of highly-reduced phases under oxygen- and water-free conditions

    No full text
    Spectra of highly-reduced mineral phases from 200 to 2500 nm provide new laboratory constraints on the surfaces of asteroids and other extremely reduced solid assemblages. Synthetic oldhamite (CaS) is distinguished by high ultraviolet reflectance (which decreases toward shorter wavelengths). Oldhamite and osbornite spectra show absorption features at ∼401 nm and ∼436 nm, respectively. Chemically pure synthetic oldhamite is spectrally distinct from naturally-occurring oldhamite from the Norton County aubrite, possibly due to differences in minor and trace element compositions, presence or absence of inclusions, or differences in oxidation/hydration (terrestrial weathering). Iron powders at 50 nm and 10 μm nominal particle sizes, nanophase graphite, and carlsbergite (CrN) all have very low reflectivity over the 200–2500 nm wavelength range. Carlsbergite has a slight blue spectral slope in the visible and near-infrared (400–2500 nm), while the iron powders and nanophase graphite show slight red slopes over this wavelength range

    The Canadian space agency planetary analogue materials suite

    No full text
    The Canadian Space Agency (CSA) recently commissioned the development of a suite of over fifty well-characterized planetary analogue materials. These materials are terrestrial rocks and minerals that are similar to those known or suspected to occur on the lunar or martian surfaces. These include: Mars analogue sedimentary, hydrothermal, igneous and low-temperature alteration rock suites; lunar analogue basaltic and anorthositic rock suites; and a generic impactite rock suite from a variety of terrestrial impact structures. Representative thin sections of the materials have been characterized by optical microscopy and electron probe microanalysis (EPMA). Reflectance spectra have been collected in the ultraviolet, visible, near-infrared and mid-infrared, covering 0.2-25. μm. Thermal infrared emission spectra were collected from 5 to 50. μm. Raman spectra with 532. nm excitation, and laser-induced fluorescence spectra with 405. nm excitation were also measured. Bulk chemical analysis was carried out using X-ray fluorescence, with Fe valence determined by wet chemistry. Chemical and mineralogical data were collected using a field-portable Terra XRD-XRF instrument similar to CheMin on the MSL Curiosity rover. Laser-induced breakdown spectroscopy (LIBS) data similar to those measured by ChemCam on MSL were collected for powdered samples, cut slab surfaces, and as depth profiles into weathered surfaces where present. Three-dimensional laser camera images of rock textures were collected for selected samples.The CSA intends to make available sample powders (<45. μm and 45-1000. μm grain sizes), thin sections, and bulk rock samples, and all analytical data collected in the initial characterisation study to the broader planetary science community.Aiming to complement existing planetary analogue rock and mineral libraries, the CSA suite represents a new resource for planetary scientists and engineers. We envision many potential applications for these materials in the definition, development and testing of new analytical instruments for use in planetary missions, as well as possible calibration and ground-truthing of remote sensing data sets. These materials may also be useful as reference materials for cross-calibration between different instruments and laboratories. Comparison of the analytical data for selected

    FC colour images of dwarf planet Ceres reveal a complicated geological history

    No full text
    The dwarf planet Ceres (equatorial diameter 963km) is the largest object that has remained in the main asteroid belt (Russell and Raymond, 2012), while most large bodies have been destroyed or removed by dynamical processes (Petit et al. 2001; Minton and Malhotra, 2009). Pre-Dawn investigations (McCord and Sotin, 2005; Castillo-Rogez and McCord, 2010; Castillo-Rogez et al., 2011) suggest that Ceres is a thermally evolved, but still volatile-rich body with potential geological activity, that was never completely molten, but possibly differentiated into a rocky core, an ice-rich mantle, and may contain remnant internal liquid water. Thermal alteration should contribute to producing a (dark) carbonaceous chondritic-like surface (McCord and Sotin, 2005; Castillo-Rogez and McCord, 2010; Castillo-Rogez et al., 2011; Nathues et al., 2015) containing ammoniated phyllosilicates (King et al., 1992; De Sanctis et al., 2015 and 2016). Here we show and analyse global contrast-rich colour mosaics, derived from a camera on-board Dawn at Ceres (Russell et al., 2016). Colours are unexpectedly more diverse on global scale than anticipated by Hubble Space Telescope (Li et al., 2006) and ground-based observations (Reddy et al. 2015). Dawn data led to the identification of five major colour units. The youngest units identified by crater counting, termed bright and bluish units, are exclusively found at equatorial and intermediate latitudes. We identified correlations between the distribution of the colour units, crater size, and formation age, inferring a crustal stratigraphy. Surface brightness and spectral properties are not correlated. The youngest surface features are the bright spots at crater Occator (~Ø 92km). Their colour spectra are highly consistent with the presence of carbonates while most of the remaining surface resembles modifications of various types of ordinary carbonaceous chondrite

    Spectral characterisation of analog samples in anticipation of OSIRS-REx's arrival at Bennu: A blind test study

    No full text
    We present spectral measurements of a suite of mineral mixtures and meteorites that are possible analogs for asteroid (101955) Bennu, the target asteroid for NASA's Origins, Spectral Interpretation, Resource Identification, Security, Regolith Explorer (OSIRIS-REx) mission. The sample suite, which includes anhydrous and hydrated mineral mixtures and a suite of chondritic meteorites (CM, CI, CV, CR, and L5), was chosen to characterize the spectral effects due to varying amounts of aqueous alteration and minor amounts of organic material. Our results demonstrate the utility of mineral mixtures for understanding the mixing behavior of meteoritic materials and identifying spectrally dominant species across the visible to near-infrared (VNIR) and thermal infrared (TIR) spectral ranges. Our measurements demonstrate that, even with subtle signatures in the spectra of chondritic meteorites, we can identify diagnostic features related to the minerals comprising each of the samples. Also, the complementary nature of the two spectral ranges regarding their ability to detect different mixture and meteorite components can be used to characterize analog sample compositions better. However, we observe differences in the VNIR and TIR spectra between the mineral mixtures and the meteorites. These differences likely result from (1) differences in the types and physical disposition of constituents in the mixtures versus in meteorites, (2) missing phases observed in meteorites that we did not add to the mixtures, and (3) albedo differences among the samples. In addition to the initial characterization of the analog samples, we will use these spectral measurements to test phase detection and abundance determination algorithms in anticipation of mapping Bennu's surface properties and selecting a sampling site
    corecore