242 research outputs found

    Theoretical Evaluations of the Fission Cross Section of the 77 eV Isomer of 235-U

    Get PDF
    We have developed models of the fission barrier (barrier heights and transition state spectra) that reproduce reasonably well the measured fission cross section of 235^{235}U from neutron energy of 1 keV to 2 MeV. From these models we have calculated the fission cross section of the 77 eV isomer of 235^{235}U over the same energy range. We find that the ratio of the isomer cross section to that of the ground state lies between about 0.45 and 0.55 at low neutron energies. The cross sections become approximately equal above 1 MeV. The ratio of the neutron capture cross section to the fission cross section for the isomer is predicted to be about a factor of 3 larger for the isomer than for the ground state of 235^{235}U at keV neutron energies. We have also calculated the cross section for the population of the isomer by inelastic neutron scattering form the 235^{235}U ground state. We find that the isomer is strongly populated, and for En=1MeVE_n = 1 MeV the (n,nγ)(n,n'\gamma) cross section leading to the population of the isomer is of the order of 0.5 barn. Thus, neutron reaction network calculations involving the uranium isotopes in a high neutron fluence are likely to be affected by the 77 eV isomer of 235^{235}U. With these same models the fission cross sections of 233^{233}U and 237^{237}U can be reproduced approximately using only minor adjustments to the barrier heights. With the significant lowering of the outer barrier that is expected for the outer barrier the general behavior of the fission cross section of 239^{239}Pu can also be reproduced.Comment: 17 pages including 8 figure

    Measurement of the B0-anti-B0-Oscillation Frequency with Inclusive Dilepton Events

    Get PDF
    The B0B^0-Bˉ0\bar B^0 oscillation frequency has been measured with a sample of 23 million \B\bar B pairs collected with the BABAR detector at the PEP-II asymmetric B Factory at SLAC. In this sample, we select events in which both B mesons decay semileptonically and use the charge of the leptons to identify the flavor of each B meson. A simultaneous fit to the decay time difference distributions for opposite- and same-sign dilepton events gives Δmd=0.493±0.012(stat)±0.009(syst)\Delta m_d = 0.493 \pm 0.012{(stat)}\pm 0.009{(syst)} ps1^{-1}.Comment: 7 pages, 1 figure, submitted to Physical Review Letter
    corecore